Enhancing electromagnetic interference mitigation: A comprehensive study on the synthesis and shielding capabilities of polypyrrole/cobalt ferrite nanocomposites
Moustafa A. Darwish , M.M. Salem , Alex V. Trukhanov , Walaa Abd-Elaziem , Atef Hamada , Di Zhou , Anwer S. Abd El-Hameed , M. Khalid Hossain , Enas H. El-Ghazzawy
{"title":"Enhancing electromagnetic interference mitigation: A comprehensive study on the synthesis and shielding capabilities of polypyrrole/cobalt ferrite nanocomposites","authors":"Moustafa A. Darwish , M.M. Salem , Alex V. Trukhanov , Walaa Abd-Elaziem , Atef Hamada , Di Zhou , Anwer S. Abd El-Hameed , M. Khalid Hossain , Enas H. El-Ghazzawy","doi":"10.1016/j.susmat.2024.e01150","DOIUrl":null,"url":null,"abstract":"<div><div>In a society increasingly infiltrated by digital and networking technologies, designing electromagnetic interference (EMI) shielding materials is critical for safeguarding sensitive electronic equipment and ensuring the smooth functioning of essential communication networks. This study focuses on the optimization of the properties of cobalt ferrite (CoFe<sub>2</sub>O<sub>4</sub>)/polypyrrole (PPy) nanocomposites made by in-situ polymerization used for electromagnetic (EM) shielding based on their magnetic and dielectric losses. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and vector network analyzer (VNA) were employed to study the materials' physical and chemical characteristics. The findings demonstrate that the magnetic and electric properties of the materials composed of CoFe<sub>2</sub>O<sub>4</sub> and PPy are substantially altered by the integration of CoFe<sub>2</sub>O<sub>4</sub> and PPy. Adding PPy to CoFe<sub>2</sub>O<sub>4</sub> reduces the real and imaginary parts of magnetic permeability, and the conductivity, dielectric constant, and dielectric loss are increased. These effects are advantageous for EM shielding applications. The high electromagnetic shielding performance mainly results from the enhanced interfacial polarization induced by interface region among CoFe<sub>2</sub>O<sub>4</sub> and PPy molecules. The influence of the PPy matrix in altering the dielectric and magnetic loss factors (<em>tanδ</em><sub><em>E</em></sub> and <em>tanδ</em><sub><em>M</em></sub>) of the embedded ferrite particles is pronounced. Although CoFe<sub>2</sub>O<sub>4</sub> shows excellent attenuation characteristics, it cannot optimally match impedance with free space, particularly at higher frequencies. In addition, material thickness and shielding efficiency adjust the reflection loss (<em>RL</em>) performance. The prepared composites can attenuate more than 95 % of the incident electromagnetic waves. This study emphasizes the benefits of employing composite materials in EMI shielding designs and the combined advantages of conductive and magnetic materials.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"42 ","pages":"Article e01150"},"PeriodicalIF":8.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993724003300","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In a society increasingly infiltrated by digital and networking technologies, designing electromagnetic interference (EMI) shielding materials is critical for safeguarding sensitive electronic equipment and ensuring the smooth functioning of essential communication networks. This study focuses on the optimization of the properties of cobalt ferrite (CoFe2O4)/polypyrrole (PPy) nanocomposites made by in-situ polymerization used for electromagnetic (EM) shielding based on their magnetic and dielectric losses. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and vector network analyzer (VNA) were employed to study the materials' physical and chemical characteristics. The findings demonstrate that the magnetic and electric properties of the materials composed of CoFe2O4 and PPy are substantially altered by the integration of CoFe2O4 and PPy. Adding PPy to CoFe2O4 reduces the real and imaginary parts of magnetic permeability, and the conductivity, dielectric constant, and dielectric loss are increased. These effects are advantageous for EM shielding applications. The high electromagnetic shielding performance mainly results from the enhanced interfacial polarization induced by interface region among CoFe2O4 and PPy molecules. The influence of the PPy matrix in altering the dielectric and magnetic loss factors (tanδE and tanδM) of the embedded ferrite particles is pronounced. Although CoFe2O4 shows excellent attenuation characteristics, it cannot optimally match impedance with free space, particularly at higher frequencies. In addition, material thickness and shielding efficiency adjust the reflection loss (RL) performance. The prepared composites can attenuate more than 95 % of the incident electromagnetic waves. This study emphasizes the benefits of employing composite materials in EMI shielding designs and the combined advantages of conductive and magnetic materials.
期刊介绍:
Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.