Hyperlogarithms in the theory of turbulence of infinite dimension

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Loran Ts. Adzhemyan , Daniil A. Evdokimov , Mikhail V. Kompaniets
{"title":"Hyperlogarithms in the theory of turbulence of infinite dimension","authors":"Loran Ts. Adzhemyan ,&nbsp;Daniil A. Evdokimov ,&nbsp;Mikhail V. Kompaniets","doi":"10.1016/j.nuclphysb.2024.116716","DOIUrl":null,"url":null,"abstract":"<div><div>Parametric integration with hyperlogarithms so far has been successfully used in problems of high energy physics (HEP) and critical statics. In this work, for the first time, it is applied to a problem of critical dynamics, namely, a stochastic model of developed turbulence in high-dimensional spaces, which has a propagator that is non-standard with respect to the HEP: <span><math><msup><mrow><mo>(</mo><mo>−</mo><mi>i</mi><mi>ω</mi><mo>+</mo><mi>ν</mi><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. Adaptation of the hyperlogarithm method is carried out by choosing a proper renormalization scheme and considering an effective dimension of the space. Analytical calculation of the renormalization group functions is performed up to the fourth order of the perturbation theory, <em>ε</em>-expansion of the critical exponent <em>ω</em> responsible for the infrared stability of the fixed point is obtained.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1008 ","pages":"Article 116716"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002827","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

Parametric integration with hyperlogarithms so far has been successfully used in problems of high energy physics (HEP) and critical statics. In this work, for the first time, it is applied to a problem of critical dynamics, namely, a stochastic model of developed turbulence in high-dimensional spaces, which has a propagator that is non-standard with respect to the HEP: (iω+νk2)1. Adaptation of the hyperlogarithm method is carried out by choosing a proper renormalization scheme and considering an effective dimension of the space. Analytical calculation of the renormalization group functions is performed up to the fourth order of the perturbation theory, ε-expansion of the critical exponent ω responsible for the infrared stability of the fixed point is obtained.
无限维湍流理论中的超对数
迄今为止,超对数参数积分已成功应用于高能物理(HEP)和临界静力学问题。在这项工作中,它首次被应用于临界动力学问题,即高维空间中发达湍流的随机模型,该模型的传播者相对于高能物理是非标准的:(-iω+νk2)-1。通过选择适当的重正化方案和考虑空间的有效维度,对超对数方法进行了调整。对重正化群函数进行了直到微扰理论四阶的分析计算,得到了负责定点红外稳定性的临界指数ω的ε展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信