Damage quantification in concrete under uniaxial compression using microcomputed tomography and digital volume correlation with consideration of heterogeneity
IF 3.4 3区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Damage quantification in concrete under uniaxial compression using microcomputed tomography and digital volume correlation with consideration of heterogeneity","authors":"","doi":"10.1016/j.mechmat.2024.105178","DOIUrl":null,"url":null,"abstract":"<div><div>Finite element-based digital volume correlation with mechanical regularization was utilized to measure the deformation fields in a concrete specimen under uniaxial compression based on in-situ (via microcomputed tomography) experiment. Heterogeneous and damage settings were introduced in the mechanical regularization. The mechanical response of the matrix and aggregates was investigated. The three-dimensional morphology of subvoxel microcrack openings was measured, the overall assessment and local depiction of concrete damage were quantified. Subvoxel microcrack openings greater than 0.26 vx were identified. The average maximum principal and average volumetric strains in the matrix were higher than those in the aggregates, and noticeable strain concentrations existed in the interfacial transition zone and pore edges. Microcracks initiated in the macroscopic elastic stage, whereas voxel-level crack openings were observed at 90% of the ultimate load. This study provides experimental support for further revealing the growth process of concrete damage.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663624002709","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Finite element-based digital volume correlation with mechanical regularization was utilized to measure the deformation fields in a concrete specimen under uniaxial compression based on in-situ (via microcomputed tomography) experiment. Heterogeneous and damage settings were introduced in the mechanical regularization. The mechanical response of the matrix and aggregates was investigated. The three-dimensional morphology of subvoxel microcrack openings was measured, the overall assessment and local depiction of concrete damage were quantified. Subvoxel microcrack openings greater than 0.26 vx were identified. The average maximum principal and average volumetric strains in the matrix were higher than those in the aggregates, and noticeable strain concentrations existed in the interfacial transition zone and pore edges. Microcracks initiated in the macroscopic elastic stage, whereas voxel-level crack openings were observed at 90% of the ultimate load. This study provides experimental support for further revealing the growth process of concrete damage.
期刊介绍:
Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.