Ke Qu , Jianwei Zhang , Haonan Wang , Fan Wu , Huahui Lin , Jianchu Chen , Zhengping Ding , Zhenzhong Yang , Peng Gao
{"title":"Atomic-scale probing of ion migration dynamics in Na3Ni2SbO6 cathode for sodium ion batteries","authors":"Ke Qu , Jianwei Zhang , Haonan Wang , Fan Wu , Huahui Lin , Jianchu Chen , Zhengping Ding , Zhenzhong Yang , Peng Gao","doi":"10.1016/j.nantod.2024.102523","DOIUrl":null,"url":null,"abstract":"<div><div>Honeycomb-layered phases like Na<sub>3</sub>Ni<sub>2</sub>SbO<sub>6</sub> have been extensively researched as high-voltage and high-rate capability cathode materials for sodium-ion batteries. However, our understanding of the structural stability and dynamic reaction mechanisms of Na<sub>3</sub>Ni<sub>2</sub>SbO<sub>6</sub> cathode during cycling, especially at atomic-scale, remains limited. Here, we track the microstructure evolution during extraction of Na<sup>+</sup> ions in Na<sub>3</sub>Ni<sub>2</sub>SbO<sub>6</sub> cathode at atomic scale in an aberration-corrected transmission electron microscope. The electron beam irradiation that can provide a driving force for the Na<sup>+</sup> ion migration, allows us to mimic the battery charge process. By controlling the electron beam dose, we study the structure evolution behavior to obtain insights into understanding the work principle and failure mechanism of Na<sub>3</sub>Ni<sub>2</sub>SbO<sub>6</sub> cathode under different charge rate conditions. We find that the real-time structural evolution and ion migration pathways of Na<sub>3</sub>Ni<sub>2</sub>SbO<sub>6</sub> cathode are distinct under different electron beam doses. High-dose irradiation reveals Na ion depletion, surface cracks, and phase transformations, mimicking rapid capacity decay. In contrast, low-dose irradiation shows slower ion migration, ordered Na vacancy formation, and maintaining structural integrity, which more closely resembles the electrochemical process of actual battery. This study provides an atomistic understanding of the structural stability and Na ions deintercalation mechanism in Na<sub>3</sub>Ni<sub>2</sub>SbO<sub>6</sub> cathodes, offering new insights into optimizing electrode materials.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102523"},"PeriodicalIF":13.2000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003797","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Honeycomb-layered phases like Na3Ni2SbO6 have been extensively researched as high-voltage and high-rate capability cathode materials for sodium-ion batteries. However, our understanding of the structural stability and dynamic reaction mechanisms of Na3Ni2SbO6 cathode during cycling, especially at atomic-scale, remains limited. Here, we track the microstructure evolution during extraction of Na+ ions in Na3Ni2SbO6 cathode at atomic scale in an aberration-corrected transmission electron microscope. The electron beam irradiation that can provide a driving force for the Na+ ion migration, allows us to mimic the battery charge process. By controlling the electron beam dose, we study the structure evolution behavior to obtain insights into understanding the work principle and failure mechanism of Na3Ni2SbO6 cathode under different charge rate conditions. We find that the real-time structural evolution and ion migration pathways of Na3Ni2SbO6 cathode are distinct under different electron beam doses. High-dose irradiation reveals Na ion depletion, surface cracks, and phase transformations, mimicking rapid capacity decay. In contrast, low-dose irradiation shows slower ion migration, ordered Na vacancy formation, and maintaining structural integrity, which more closely resembles the electrochemical process of actual battery. This study provides an atomistic understanding of the structural stability and Na ions deintercalation mechanism in Na3Ni2SbO6 cathodes, offering new insights into optimizing electrode materials.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.