Co-N-C catalyst with single atom active sites for base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions
Sohaib Hameed , Xiaoli Pan , Weixiang Guan , Aiqin Wang
{"title":"Co-N-C catalyst with single atom active sites for base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions","authors":"Sohaib Hameed , Xiaoli Pan , Weixiang Guan , Aiqin Wang","doi":"10.1016/j.mcat.2024.114616","DOIUrl":null,"url":null,"abstract":"<div><div>The production of 2,5-furandicarboxylic acid (FDCA), a promising biodegradable alternative to fossil-based terephthalic acid (PTA), from biomass-derived 5-hydroxymethylfurfural (HMF) is of significant importance. A major challenge is to develop an effective non-precious metal catalyst system that does not require a homogeneous base. In this study, we present a noble-metal-free Co-N-C catalyst, derived from the pyrolysis of cobalt-phenanthroline complexes on a carbon support. This catalyst demonstrates exceptional performance, achieving a FDCA yield of 99.9 % and maintaining reusability for up to five catalytic cycles in the base-free oxidation of HMF to FDCA under mild conditions. Through controlled experiments and comprehensive characterizations, we propose that the active sites in the Co-N-C catalyst are Co single atoms bonded to nitrogen within graphitic sheets. This approach provides valuable insights into the exact nature of the active sites in such noble-metal-free M-N-C catalysts designed for biomass conversion</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114616"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007983","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The production of 2,5-furandicarboxylic acid (FDCA), a promising biodegradable alternative to fossil-based terephthalic acid (PTA), from biomass-derived 5-hydroxymethylfurfural (HMF) is of significant importance. A major challenge is to develop an effective non-precious metal catalyst system that does not require a homogeneous base. In this study, we present a noble-metal-free Co-N-C catalyst, derived from the pyrolysis of cobalt-phenanthroline complexes on a carbon support. This catalyst demonstrates exceptional performance, achieving a FDCA yield of 99.9 % and maintaining reusability for up to five catalytic cycles in the base-free oxidation of HMF to FDCA under mild conditions. Through controlled experiments and comprehensive characterizations, we propose that the active sites in the Co-N-C catalyst are Co single atoms bonded to nitrogen within graphitic sheets. This approach provides valuable insights into the exact nature of the active sites in such noble-metal-free M-N-C catalysts designed for biomass conversion
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods