Yohanna Layssa dos Santos Melo , Ana Carolina Luchiari , Beatriz Silva Lopes , Maria Gabriela Ferreira Rocha Silva , Tatiana dos Santos Pais , João Eduardo Procópio Gama Cortez , Christina da Silva Camillo , Sérgio Adriane Bezerra de Moura , Juliana Kelly da Silva-Maia , Ana Heloneida de Araújo Morais
{"title":"Acute toxicity of trypsin inhibitor from tamarind seeds in embryo and adult zebrafish (Danio rerio)","authors":"Yohanna Layssa dos Santos Melo , Ana Carolina Luchiari , Beatriz Silva Lopes , Maria Gabriela Ferreira Rocha Silva , Tatiana dos Santos Pais , João Eduardo Procópio Gama Cortez , Christina da Silva Camillo , Sérgio Adriane Bezerra de Moura , Juliana Kelly da Silva-Maia , Ana Heloneida de Araújo Morais","doi":"10.1016/j.toxrep.2024.101766","DOIUrl":null,"url":null,"abstract":"<div><div>The trypsin inhibitor isolated from tamarind seeds (TTI) is being investigated for potential applications in the treatment of noncommunicable diseases (NCD), such as hypertension, obesity, and diabetes. This study aimed to assess TTI embryotoxicity and acute toxicity in adult zebrafish (<em>Danio rerio</em>). TTI was extracted and isolated from tamarind seeds. Embryonic and adult zebrafish were exposed for 96 hours to three concentrations of TTI (12.5, 25, and 50 mg/L). Zebrafish embryos (n=60 per group) were evaluated for survival, hatching, malformations, and potential developmental marker alterations, in addition to cardiotoxicity and neurotoxicity tests. For acute toxicity assessment in adults (n=20 per group), survival and locomotor and anxiety-like behaviors were assessed, along with genotoxicity (micronucleus) evaluation. Embryos exposed to TTI showed no significant adverse effects, presented normal heart rates and positive reflex response in the neurotoxicity tests. In adult fish, TTI did not cause mortality or significant behavioral changes, suggesting no neurotoxicity and no genotoxicity. Histopathological analyses of the whole body showed only changes in the liver and spinal cord, similar to those observed in the control group not exposed to TTI. These findings indicate TTI's biosafety and therapeutic potential in complex organisms. Further research is required to evaluate its long-term effects and efficacy in treating non-communicable diseases.</div></div>","PeriodicalId":23129,"journal":{"name":"Toxicology Reports","volume":"13 ","pages":"Article 101766"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214750024001495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The trypsin inhibitor isolated from tamarind seeds (TTI) is being investigated for potential applications in the treatment of noncommunicable diseases (NCD), such as hypertension, obesity, and diabetes. This study aimed to assess TTI embryotoxicity and acute toxicity in adult zebrafish (Danio rerio). TTI was extracted and isolated from tamarind seeds. Embryonic and adult zebrafish were exposed for 96 hours to three concentrations of TTI (12.5, 25, and 50 mg/L). Zebrafish embryos (n=60 per group) were evaluated for survival, hatching, malformations, and potential developmental marker alterations, in addition to cardiotoxicity and neurotoxicity tests. For acute toxicity assessment in adults (n=20 per group), survival and locomotor and anxiety-like behaviors were assessed, along with genotoxicity (micronucleus) evaluation. Embryos exposed to TTI showed no significant adverse effects, presented normal heart rates and positive reflex response in the neurotoxicity tests. In adult fish, TTI did not cause mortality or significant behavioral changes, suggesting no neurotoxicity and no genotoxicity. Histopathological analyses of the whole body showed only changes in the liver and spinal cord, similar to those observed in the control group not exposed to TTI. These findings indicate TTI's biosafety and therapeutic potential in complex organisms. Further research is required to evaluate its long-term effects and efficacy in treating non-communicable diseases.