Prediction of spatiotemporal dynamics using deep learning: Coupled neural networks of long short-terms memory, auto-encoder and physics-informed neural networks

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ziyang Zhang , Feifan Zhang , Weixi Gong , Tailai Chen , Luowei Tan , Heng Gui
{"title":"Prediction of spatiotemporal dynamics using deep learning: Coupled neural networks of long short-terms memory, auto-encoder and physics-informed neural networks","authors":"Ziyang Zhang ,&nbsp;Feifan Zhang ,&nbsp;Weixi Gong ,&nbsp;Tailai Chen ,&nbsp;Luowei Tan ,&nbsp;Heng Gui","doi":"10.1016/j.physd.2024.134399","DOIUrl":null,"url":null,"abstract":"<div><div>Several classic reaction-diffusion models using partial differential equations (PDEs) have been established to elucidate the formation mechanism of vegetation patterns. However, predictive modeling of complex spatiotemporal dynamics using traditional numerical methods can be significantly challenging in many practical scenarios. Physics-Informed Neural Networks (PINNs) provide a new approach to predict the solution of PDEs. However, the generalization of PINNs is not satisfactory when pretrained PINNs is directly used in non-trained space (defined as explorations). This may be attributed to the lack of training in the time dimension. Therefore, a framework (LA-PINNs) is proposed to predict the evolutionary solution of the non-dimensional vegetation-sand model. The framework couples neural networks of Long-Short Terms Memory, Auto-Encoder and Physics-Informed Neural Networks. The predictions of LA-PINNs are much better than those of PINNs. Then we studied the effects of hyperparameters on the accuracy of predictions. Based on training in time dimension by LSTM module and pretraining for quick-training strategy, LA-PINNs can improve the accuracy of explorations.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400349X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Several classic reaction-diffusion models using partial differential equations (PDEs) have been established to elucidate the formation mechanism of vegetation patterns. However, predictive modeling of complex spatiotemporal dynamics using traditional numerical methods can be significantly challenging in many practical scenarios. Physics-Informed Neural Networks (PINNs) provide a new approach to predict the solution of PDEs. However, the generalization of PINNs is not satisfactory when pretrained PINNs is directly used in non-trained space (defined as explorations). This may be attributed to the lack of training in the time dimension. Therefore, a framework (LA-PINNs) is proposed to predict the evolutionary solution of the non-dimensional vegetation-sand model. The framework couples neural networks of Long-Short Terms Memory, Auto-Encoder and Physics-Informed Neural Networks. The predictions of LA-PINNs are much better than those of PINNs. Then we studied the effects of hyperparameters on the accuracy of predictions. Based on training in time dimension by LSTM module and pretraining for quick-training strategy, LA-PINNs can improve the accuracy of explorations.
利用深度学习预测时空动态:长短期记忆耦合神经网络、自动编码器和物理信息神经网络
为了阐明植被形态的形成机制,人们利用偏微分方程(PDEs)建立了一些经典的反应-扩散模型。然而,在许多实际情况下,使用传统数值方法对复杂的时空动态进行预测建模具有很大的挑战性。物理信息神经网络(PINNs)为预测 PDEs 的解提供了一种新方法。然而,当预训练的 PINNs 直接用于非训练空间(定义为探索)时,PINNs 的泛化效果并不理想。这可能是由于缺乏时间维度的训练。因此,我们提出了一个框架(LA-PINNs)来预测非维度植被-沙地模型的演化解。该框架结合了长短期记忆神经网络、自动编码器和物理信息神经网络。LA-PINNs 的预测结果比 PINNs 好得多。然后,我们研究了超参数对预测准确性的影响。基于 LSTM 模块的时间维度训练和快速训练策略的预训练,LA-PINNs 可以提高探索的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信