Riemann theta function solutions to the semi-discrete Boussinesq equations

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yaru Xu , Xianguo Geng , Yunyun Zhai
{"title":"Riemann theta function solutions to the semi-discrete Boussinesq equations","authors":"Yaru Xu ,&nbsp;Xianguo Geng ,&nbsp;Yunyun Zhai","doi":"10.1016/j.physd.2024.134398","DOIUrl":null,"url":null,"abstract":"<div><div>The hierarchy of the semi-discrete Boussinesq equations associated with a discrete 4 × 4 matrix spectral problem has been derived by means of the zero-curvature and the Lenard recursion equations. The tetragonal curve is introduced by resorting to the characteristic polynomial of the Lax matrix for the semi-discrete Boussinesq hierarchy, upon which the Baker-Akhiezer functions, meromorphic functions, Abel differentials, and Riemann theta functions are constructed. Finally, we derive the Riemann theta function solutions to the semi-discrete Boussinesq hierarchy.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The hierarchy of the semi-discrete Boussinesq equations associated with a discrete 4 × 4 matrix spectral problem has been derived by means of the zero-curvature and the Lenard recursion equations. The tetragonal curve is introduced by resorting to the characteristic polynomial of the Lax matrix for the semi-discrete Boussinesq hierarchy, upon which the Baker-Akhiezer functions, meromorphic functions, Abel differentials, and Riemann theta functions are constructed. Finally, we derive the Riemann theta function solutions to the semi-discrete Boussinesq hierarchy.
半离散布辛斯克方程的黎曼 Theta 函数解
与离散 4 × 4 矩阵谱问题相关的半离散布西内斯克方程的层次结构是通过零曲率和莱纳德递归方程推导出来的。通过半离散布森斯克层次的 Lax 矩阵的特征多项式引入了四角形曲线,并在此基础上构造了贝克-阿基泽函数、子形态函数、阿贝尔微分和黎曼 Theta 函数。最后,我们推导出半离散 Boussinesq 层次的黎曼 Theta 函数解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信