Two-grid weak Galerkin finite element method for nonlinear parabolic equations

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Jianghong Zhang , Fuzheng Gao , Jintao Cui
{"title":"Two-grid weak Galerkin finite element method for nonlinear parabolic equations","authors":"Jianghong Zhang ,&nbsp;Fuzheng Gao ,&nbsp;Jintao Cui","doi":"10.1016/j.camwa.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a two-grid algorithm for solving parabolic equation with nonlinear compressibility coefficient, spatially discretized by the weak Galerkin finite element method. The optimal error estimates are established. We further show that both grid solutions can achieve the same accuracy as long as the grid size satisfies <span><math><mi>H</mi><mo>=</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span>. Compared with Newton iteration, the two-grid algorithm could greatly reduce the computational cost. We verify the effectiveness of the algorithm by performing numerical experiments.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004504","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a two-grid algorithm for solving parabolic equation with nonlinear compressibility coefficient, spatially discretized by the weak Galerkin finite element method. The optimal error estimates are established. We further show that both grid solutions can achieve the same accuracy as long as the grid size satisfies H=O(h1/2). Compared with Newton iteration, the two-grid algorithm could greatly reduce the computational cost. We verify the effectiveness of the algorithm by performing numerical experiments.
非线性抛物方程的双网格弱 Galerkin 有限元方法
本文提出了一种双网格算法,用于求解具有非线性压缩系数的抛物线方程,该方程采用弱 Galerkin 有限元法进行空间离散。建立了最优误差估计。我们进一步证明,只要网格大小满足 H=O(h1/2),两种网格解法都能达到相同的精度。与牛顿迭代相比,双网格算法可以大大降低计算成本。我们通过数值实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信