Unveiling novel insights into Kirchhoff migration for a fast and effective object detection from experimental Fresnel dataset

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Won-Kwang Park
{"title":"Unveiling novel insights into Kirchhoff migration for a fast and effective object detection from experimental Fresnel dataset","authors":"Won-Kwang Park","doi":"10.1016/j.camwa.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a limited-aperture inverse scattering problem for a fast identification of small dielectric objects from two-dimensional Fresnel experimental dataset. To this end, we apply the Kirchhoff migration (KM) imaging technique and design an imaging function from the generated multi-static response matrix. Using the integral equation-based representation formula for the scattered field, we theoretically investigate the applicability of the KM by formulating the imaging function as a uniformly convergent infinite series of integer-order Bessel functions of the first kind. Numerical simulation results using the experimental Fresnel dataset are presented to support the theoretical result.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004620","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a limited-aperture inverse scattering problem for a fast identification of small dielectric objects from two-dimensional Fresnel experimental dataset. To this end, we apply the Kirchhoff migration (KM) imaging technique and design an imaging function from the generated multi-static response matrix. Using the integral equation-based representation formula for the scattered field, we theoretically investigate the applicability of the KM by formulating the imaging function as a uniformly convergent infinite series of integer-order Bessel functions of the first kind. Numerical simulation results using the experimental Fresnel dataset are presented to support the theoretical result.
揭示基尔霍夫迁移的新见解,从菲涅尔实验数据集中快速有效地检测物体
在本文中,我们考虑了从二维菲涅尔实验数据集中快速识别小型介质物体的有限孔径反向散射问题。为此,我们应用了基尔霍夫迁移(KM)成像技术,并根据生成的多静态响应矩阵设计了一个成像函数。利用基于积分方程的散射场表示公式,我们将成像函数表述为一阶整数贝塞尔函数的均匀收敛无穷级数,从理论上研究了 KM 的适用性。我们还利用菲涅尔实验数据集给出了数值模拟结果,以支持理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信