Comparison of two-dimensional and three-dimensional culture systems and their responses to chemotherapy in cells representing disease progression of high-grade serous ovarian cancer
Naya El Mokbel , Alicia A. Goyeneche , Rewati Prakash , Benjamin N. Forgie , Farah H. Abdalbari , Xing Zeng , Basile Tessier-Cloutier , Shuk On Annie Leung , Carlos M. Telleria
{"title":"Comparison of two-dimensional and three-dimensional culture systems and their responses to chemotherapy in cells representing disease progression of high-grade serous ovarian cancer","authors":"Naya El Mokbel , Alicia A. Goyeneche , Rewati Prakash , Benjamin N. Forgie , Farah H. Abdalbari , Xing Zeng , Basile Tessier-Cloutier , Shuk On Annie Leung , Carlos M. Telleria","doi":"10.1016/j.bbrep.2024.101838","DOIUrl":null,"url":null,"abstract":"<div><div>High-grade serous cancer is the most common type of ovarian cancer and is usually diagnosed at advanced stages with high mortality due to recurrence and eventual resistance to standard platinum therapy. The aim of this study was to compare two-dimensional (2D) versus tridimensional (3D) cell culture as a preclinical model of response to carboplatin, paclitaxel and niraparib using PEO1, PEO4 and PEO6 cell lines, which were generated from the same patient along disease progression. Morphologically, cells formed flat adherent layers versus spheroidal structures with different compaction patterns in 2D and 3D respectively. In 2D, apoptosis was rare whereas in 3D cells formed a multilayered structure with an outer layer of live proliferating cells and an inner core of apoptotic cells. Furthermore, a differential capacity to produce ATP was observed among the cell lines in 3D but not in 2D. While response to carboplatin, paclitaxel and niraparib in both settings followed a similar trend, a lower sensitivity was observed in 3D with respect to 2D. Overall, 3D cell culture is likely more reflective of the <em>in vivo</em> cellular tumor behavior and more suitable of therapeutic evaluation given its added complexity absent in 2D.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"40 ","pages":"Article 101838"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580824002024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-grade serous cancer is the most common type of ovarian cancer and is usually diagnosed at advanced stages with high mortality due to recurrence and eventual resistance to standard platinum therapy. The aim of this study was to compare two-dimensional (2D) versus tridimensional (3D) cell culture as a preclinical model of response to carboplatin, paclitaxel and niraparib using PEO1, PEO4 and PEO6 cell lines, which were generated from the same patient along disease progression. Morphologically, cells formed flat adherent layers versus spheroidal structures with different compaction patterns in 2D and 3D respectively. In 2D, apoptosis was rare whereas in 3D cells formed a multilayered structure with an outer layer of live proliferating cells and an inner core of apoptotic cells. Furthermore, a differential capacity to produce ATP was observed among the cell lines in 3D but not in 2D. While response to carboplatin, paclitaxel and niraparib in both settings followed a similar trend, a lower sensitivity was observed in 3D with respect to 2D. Overall, 3D cell culture is likely more reflective of the in vivo cellular tumor behavior and more suitable of therapeutic evaluation given its added complexity absent in 2D.
期刊介绍:
Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.