Elnaz Meydani , Christoph Duesing , Matthias Trier
{"title":"Modeling higher-order social influence using multi-head graph attention autoencoder","authors":"Elnaz Meydani , Christoph Duesing , Matthias Trier","doi":"10.1016/j.is.2024.102474","DOIUrl":null,"url":null,"abstract":"<div><div>Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations among users to predict their preferences. Recently, graph neural networks have been utilized for social recommendations, modeling user-user social relations and user–item interactions as graph-structured data. Despite their improvement over traditional systems, most existing social recommender systems exploit only first-order social relations and overlook the importance of social influence diffusion from higher-order neighbors in social networks. Additionally, these techniques often treat all neighboring nodes equally, without highlighting the most influential ones. To address these challenges, we introduce GATE-SR, a novel model that leverages a multi-head graph attention autoencoder to capture indirect social influence from higher-order neighbors while emphasizing the most relevant users. Moreover, we incorporate implicit social connections derived from coherent communities within the network. While GATE-SR performs comparably to baseline models in rich data environments, its strength lies in excelling at cold-start scenarios—where other models often fall short. This focus on cold-start performance aligns with our goal of building a robust recommender system for real-world challenges. Through extensive experiments on three real-world datasets, we demonstrate that GATE-SR outperforms several state-of-the-art baselines in cold-start scenarios. These results highlight the crucial role of accentuating the most influential neighbors, both explicit and implicit, when modeling higher-order social connections for more accurate recommendations.</div></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"128 ","pages":"Article 102474"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924001327","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations among users to predict their preferences. Recently, graph neural networks have been utilized for social recommendations, modeling user-user social relations and user–item interactions as graph-structured data. Despite their improvement over traditional systems, most existing social recommender systems exploit only first-order social relations and overlook the importance of social influence diffusion from higher-order neighbors in social networks. Additionally, these techniques often treat all neighboring nodes equally, without highlighting the most influential ones. To address these challenges, we introduce GATE-SR, a novel model that leverages a multi-head graph attention autoencoder to capture indirect social influence from higher-order neighbors while emphasizing the most relevant users. Moreover, we incorporate implicit social connections derived from coherent communities within the network. While GATE-SR performs comparably to baseline models in rich data environments, its strength lies in excelling at cold-start scenarios—where other models often fall short. This focus on cold-start performance aligns with our goal of building a robust recommender system for real-world challenges. Through extensive experiments on three real-world datasets, we demonstrate that GATE-SR outperforms several state-of-the-art baselines in cold-start scenarios. These results highlight the crucial role of accentuating the most influential neighbors, both explicit and implicit, when modeling higher-order social connections for more accurate recommendations.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.