{"title":"Domain decomposition with local time discretization for the nonlinear Stokes–Biot system","authors":"Hemanta Kunwar , Hyesuk Lee","doi":"10.1016/j.cam.2024.116311","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a domain decomposition method for the fluid-poroelastic structure interaction (FPSI) system, which utilizes local time integration for subproblems. To derive the domain decomposition scheme, we introduce a Lagrange multiplier and define time-dependent Steklov–Poincaré-type operators based on the interface conditions. These operators are employed to transform the coupled system into an evolutionary nonlinear interface problem, which is then solved using an iterative algorithm. This approach provides the flexibility to use different time discretization schemes and step sizes in subdomains, making it an efficient method for simulating multiphysics systems. We present numerical tests for both non-physical and physical problems to demonstrate the accuracy and efficiency of this method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116311"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005594","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a domain decomposition method for the fluid-poroelastic structure interaction (FPSI) system, which utilizes local time integration for subproblems. To derive the domain decomposition scheme, we introduce a Lagrange multiplier and define time-dependent Steklov–Poincaré-type operators based on the interface conditions. These operators are employed to transform the coupled system into an evolutionary nonlinear interface problem, which is then solved using an iterative algorithm. This approach provides the flexibility to use different time discretization schemes and step sizes in subdomains, making it an efficient method for simulating multiphysics systems. We present numerical tests for both non-physical and physical problems to demonstrate the accuracy and efficiency of this method.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.