Continuous asymmetric Doob inequalities in noncommutative symmetric spaces

IF 1.7 2区 数学 Q1 MATHEMATICS
Yong Jiao, Hui Li, Sijie Luo, Lian Wu
{"title":"Continuous asymmetric Doob inequalities in noncommutative symmetric spaces","authors":"Yong Jiao,&nbsp;Hui Li,&nbsp;Sijie Luo,&nbsp;Lian Wu","doi":"10.1016/j.jfa.2024.110701","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mo>(</mo><mi>M</mi><mo>,</mo><mi>τ</mi><mo>)</mo></math></span> be a noncommutative probability space equipped with a filtration <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></msub></math></span> whose union is <span><math><msup><mrow><mi>w</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-dense in <span><math><mi>M</mi></math></span>, and let <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></msub></math></span> be the associated conditional expectations. We prove in the present paper that if the symmetric space <span><math><mi>E</mi><mo>∈</mo><mi>Int</mi><mo>[</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo></math></span> with <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo>&lt;</mo><mn>2</mn></math></span> and <em>E</em> is <span><math><mn>2</mn><mo>(</mo><mn>1</mn><mo>−</mo><mi>θ</mi><mo>)</mo></math></span>-convex and <em>w</em>-concave with <span><math><mi>p</mi><mo>&lt;</mo><mi>w</mi><mo>&lt;</mo><mn>2</mn></math></span>, then the following holds:<span><span><span><math><msub><mrow><mo>‖</mo><msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></msub><mo>‖</mo></mrow><mrow><mi>E</mi><mo>(</mo><mi>M</mi><mo>;</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>θ</mi></mrow></msubsup><mo>)</mo></mrow></msub><mo>≤</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>E</mi><mo>,</mo><mi>θ</mi></mrow></msub><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msubsup></mrow></msub><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mi>c</mi></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span></span></span> provided <span><math><mn>1</mn><mo>−</mo><mi>p</mi><mo>/</mo><mn>2</mn><mo>&lt;</mo><mi>θ</mi><mo>&lt;</mo><mn>1</mn></math></span>. Similar result holds for <span><math><mi>x</mi><mo>∈</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mi>E</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><mi>M</mi><mo>)</mo></math></span>. Moreover, if <span><math><mi>E</mi><mo>∈</mo><mi>Int</mi><mo>[</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>,</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>]</mo></math></span> with <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>≤</mo><mi>q</mi><mo>&lt;</mo><mn>2</mn></math></span> and <em>E</em> is <em>w</em>-concave with <span><math><mn>2</mn><mo>&lt;</mo><mi>w</mi><mo>&lt;</mo><mn>2</mn><mi>p</mi><mo>/</mo><mo>(</mo><mn>2</mn><mo>−</mo><mi>p</mi><mo>)</mo></math></span>, then for each <span><math><mi>x</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span> there exist <em>y</em>, <span><math><mi>z</mi><mo>∈</mo><mi>E</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span> such that <span><math><mi>x</mi><mo>=</mo><mi>y</mi><mo>+</mo><mi>z</mi></math></span> and<span><span><span><math><msub><mrow><mo>‖</mo><msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>y</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></msub><mo>‖</mo></mrow><mrow><mi>E</mi><mrow><mo>(</mo><mi>M</mi><mo>;</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>c</mi></mrow></msubsup><mo>)</mo></mrow></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><msub><mrow><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>(</mo><mi>z</mi><mo>)</mo><mo>)</mo></mrow><mrow><mi>t</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></msub><mo>‖</mo></mrow><mrow><mi>E</mi><mrow><mo>(</mo><mi>M</mi><mo>;</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mo>∞</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mo>)</mo></mrow></mrow></msub><mspace></mspace><mspace></mspace><mo>≤</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>E</mi></mrow></msub><msub><mrow><mo>‖</mo><mi>x</mi><mo>‖</mo></mrow><mrow><mi>E</mi><mo>(</mo><mi>M</mi><mo>)</mo></mrow></msub><mo>.</mo></math></span></span></span> These results can be considered as continuous analogues of those due to Randrianantoanina et al. <span><span>[33]</span></span>. One of the key ingredients in our proof is a new decomposition theorem of <span><math><mi>E</mi><mo>(</mo><mi>M</mi><mo>)</mo></math></span>-modules for general symmetric space <em>E</em>, which extends the known result of Junge and Sherman.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003896","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let (M,τ) be a noncommutative probability space equipped with a filtration (Mt)t[0,1] whose union is w-dense in M, and let (Et)t[0,1] be the associated conditional expectations. We prove in the present paper that if the symmetric space EInt[Lp,Lq] with 1<pq<2 and E is 2(1θ)-convex and w-concave with p<w<2, then the following holds:(Et(x))t[0,1]E(M;θ)CE,θxHEc,xHEc(M) provided 1p/2<θ<1. Similar result holds for xHEr(M). Moreover, if EInt[Lp,Lq] with 1<pq<2 and E is w-concave with 2<w<2p/(2p), then for each xE(M) there exist y, zE(M) such that x=y+z and(Et(y))t[0,1]E(M;c)+(Et(z))t[0,1]E(M;r)cExE(M). These results can be considered as continuous analogues of those due to Randrianantoanina et al. [33]. One of the key ingredients in our proof is a new decomposition theorem of E(M)-modules for general symmetric space E, which extends the known result of Junge and Sherman.
非交换对称空间中的连续非对称 Doob 不等式
让(M,τ)是一个非交换概率空间,配备了一个滤波 (Mt)t∈[0,1],其联合在 M 中是 w⁎密集的;让 (Et)t∈[0,1] 是相关的条件期望。本文将证明,如果对称空间 E∈Int[Lp,Lq]为 1<p≤q<2,且 E 为 2(1-θ)-convex 和 w-concave 为 p<w<2,则以下条件成立:Et(x))t∈[0,1]‖E(M;ℓ∞θ)≤CE,θ‖x‖HEc,x∈HEc(M)提供 1-p/2<;θ<;1。类似的结果也适用于 x∈HEr(M)。此外,如果 E∈Int[Lp,Lq]为 1<p≤q<2,且 E 为 w-concave with 2<w<;2p/(2-p),则对于每个 x∈E(M)存在 y、z∈E(M),使得 x=y+z 且‖(Et(y))t∈[0,1]‖E(M;ℓ∞c)+‖(Et(z))t∈[0,1]‖E(M;ℓ∞r)≤c‖Ex‖E(M)。这些结果可视为 Randrianantoanina 等人[33]的连续类似结果。我们证明的关键要素之一是一般对称空间 E 的 E(M)模块的新分解定理,它扩展了 Junge 和 Sherman 的已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信