Yahaya Saadu Itas , Mayeen Uddin Khandaker , Aliyu Mohammed Aliyu , Ali Shawabkeh , Afsar khan , Abdulrahman A. Almehizia
{"title":"Zinc boro-aluminosilicate glass for infrared and gamma sensing applications: Physical properties and gamma ray attenuation aspects","authors":"Yahaya Saadu Itas , Mayeen Uddin Khandaker , Aliyu Mohammed Aliyu , Ali Shawabkeh , Afsar khan , Abdulrahman A. Almehizia","doi":"10.1016/j.radphyschem.2024.112293","DOIUrl":null,"url":null,"abstract":"<div><div>The demand for more materials for efficient shielding of radiation has been on the rise day by day due to some witnessed progress in applications of radiations in science and technology. In this research, we investigated the gamma ray shielding capacity of zinc boro-aluminosilicate (ZBASi) glass by varying concentrations of B<sub>2</sub>O<sub>3</sub>. Fundamentally, experimental and theoretical means were both adopted to evaluate photon shielding characteristics of the studied glasses. Additionally, amorphous nature and crystalline sizes of the glass sample were determined using XRD technique and Debye Scherrer equation respectively. The results show that as the B<sub>2</sub>O<sub>3</sub> content increased from 55 to 70 wt %, the optical bandgap, and packing density decreased. However, the density, and molar volume were found to increase accordingly. Using Phy-x/PSD and genat4, the maximum values of mass attenuation coefficient (MAC) for ZBASi-4, ZBASi-3, ZBASi-2, and ZBASi-1 were found to be 20.2, 17.5, 16.3, and 9.6 cm<sup>2</sup>/g at 20 KeV, respectively. With respect to exposure rate, the exposure buildup factor (EBF) is low in the region where density is high, meaning that photon attenuation power is high in the region of low EFB (high density). The production of aluminosilicate glass poses fewer environmental risks than that of traditional lead-based shielding materials. It is therefore a more environmentally friendly option since harmful heavy metals are not involved.</div></div>","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"226 ","pages":"Article 112293"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969806X24007850","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The demand for more materials for efficient shielding of radiation has been on the rise day by day due to some witnessed progress in applications of radiations in science and technology. In this research, we investigated the gamma ray shielding capacity of zinc boro-aluminosilicate (ZBASi) glass by varying concentrations of B2O3. Fundamentally, experimental and theoretical means were both adopted to evaluate photon shielding characteristics of the studied glasses. Additionally, amorphous nature and crystalline sizes of the glass sample were determined using XRD technique and Debye Scherrer equation respectively. The results show that as the B2O3 content increased from 55 to 70 wt %, the optical bandgap, and packing density decreased. However, the density, and molar volume were found to increase accordingly. Using Phy-x/PSD and genat4, the maximum values of mass attenuation coefficient (MAC) for ZBASi-4, ZBASi-3, ZBASi-2, and ZBASi-1 were found to be 20.2, 17.5, 16.3, and 9.6 cm2/g at 20 KeV, respectively. With respect to exposure rate, the exposure buildup factor (EBF) is low in the region where density is high, meaning that photon attenuation power is high in the region of low EFB (high density). The production of aluminosilicate glass poses fewer environmental risks than that of traditional lead-based shielding materials. It is therefore a more environmentally friendly option since harmful heavy metals are not involved.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.