{"title":"In-situ water separation enhanced methyl glycolate oxidation to methyl glyoxylate by catalytic membrane reactor","authors":"Jia Ding , Shengyu Zhou , Chenglong Qiu, Yuanhao Wu, Yulong Li, Chao Fan, Fangjun Shao, Shengwei Deng, Jianguo Wang","doi":"10.1016/j.memsci.2024.123403","DOIUrl":null,"url":null,"abstract":"<div><div>The selective oxidation of methyl glycolate by oxygen is a green route for the synthesis of methyl glyoxylate, which however faces great challenges like the consecutive hydrolysis reaction between methyl glyoxylate and by-product water. Herein, we fabricated an in-situ water separation catalytic membrane reactor (CMR) to suppress the hydrolysis of methyl glyoxylate, which can promptly and preferentially remove water from the reaction system by a hydrophilic NaA membrane. The MoO<sub>3</sub>@NaA CMR achieved a high methyl glyoxylate selectivity of 84.0 % at 260 °C and 2 bar, being 32.4 % higher than that of the conventional fixed-bed reactor (FBR), while the methyl glycolate conversion was almost the same for both modes. Moreover, the deactivation of the MoO<sub>3</sub> catalyst caused by water in CMR was also greatly inhibited, exhibiting excellent stability as compared to FBR. The in-situ water separation strategy in this work contributed to a new concept to improve the selectivity of easily hydrolyzable products.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"714 ","pages":"Article 123403"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824009979","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The selective oxidation of methyl glycolate by oxygen is a green route for the synthesis of methyl glyoxylate, which however faces great challenges like the consecutive hydrolysis reaction between methyl glyoxylate and by-product water. Herein, we fabricated an in-situ water separation catalytic membrane reactor (CMR) to suppress the hydrolysis of methyl glyoxylate, which can promptly and preferentially remove water from the reaction system by a hydrophilic NaA membrane. The MoO3@NaA CMR achieved a high methyl glyoxylate selectivity of 84.0 % at 260 °C and 2 bar, being 32.4 % higher than that of the conventional fixed-bed reactor (FBR), while the methyl glycolate conversion was almost the same for both modes. Moreover, the deactivation of the MoO3 catalyst caused by water in CMR was also greatly inhibited, exhibiting excellent stability as compared to FBR. The in-situ water separation strategy in this work contributed to a new concept to improve the selectivity of easily hydrolyzable products.
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.