Tarun Ram Kanuri , Subhadeep Roy , Soumyajyoti Biswas
{"title":"Inequality of creep avalanches can predict imminent breakdown","authors":"Tarun Ram Kanuri , Subhadeep Roy , Soumyajyoti Biswas","doi":"10.1016/j.physa.2024.130148","DOIUrl":null,"url":null,"abstract":"<div><div>We have numerically studied a mean-field fiber bundle model of fracture at a non-zero temperature and acted upon by a constant external tensile stress. The individual fibers fail due to creep-like dynamics that lead up to a catastrophic breakdown. We quantify the variations in sizes of the resulting avalanches by calculating the Lorenz function and two inequality indices – Gini (<span><math><mi>g</mi></math></span>) and Kolkata (<span><math><mi>k</mi></math></span>) indices – derived from the Lorenz function. We show that the two indices cross just prior to the failure point when the dynamics goes through intermittent avalanches. For a continuous failure dynamics (finite numbers of fibers breaking at each time step), the crossing does not happen. However, in that phase, the usual prediction method i.e., linear relation between the time of minimum strain-rate (time at which rate of fiber breaking is the minimum) and failure time, holds. The boundary between continuous and intermittent dynamics is very close to the boundary between crossing and non-crossing of the two indices in the temperature-stress phase space, both drawn from independent analytical calculations and are verified by numerical simulations.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130148"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006575","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We have numerically studied a mean-field fiber bundle model of fracture at a non-zero temperature and acted upon by a constant external tensile stress. The individual fibers fail due to creep-like dynamics that lead up to a catastrophic breakdown. We quantify the variations in sizes of the resulting avalanches by calculating the Lorenz function and two inequality indices – Gini () and Kolkata () indices – derived from the Lorenz function. We show that the two indices cross just prior to the failure point when the dynamics goes through intermittent avalanches. For a continuous failure dynamics (finite numbers of fibers breaking at each time step), the crossing does not happen. However, in that phase, the usual prediction method i.e., linear relation between the time of minimum strain-rate (time at which rate of fiber breaking is the minimum) and failure time, holds. The boundary between continuous and intermittent dynamics is very close to the boundary between crossing and non-crossing of the two indices in the temperature-stress phase space, both drawn from independent analytical calculations and are verified by numerical simulations.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.