{"title":"Study on pedestrian evacuation simulation model considering group behavior","authors":"Sheng-Hui Qin, Na Li","doi":"10.1016/j.physa.2024.130138","DOIUrl":null,"url":null,"abstract":"<div><div>As a crowded place on the university campus, the cafeteria inevitably has many safety hazards, such as fire accidents caused by open flames and large appliances, stampede accidents caused by overcrowding during peak dining hours, etc. Therefore, studying pedestrian evacuation in university campus cafeterias is particularly necessary. Pedestrians on campus mostly travel in groups. Previous studies mainly used continuous models to discuss pedestrian group evacuation behavior. In this study, based on the cellular automaton pedestrian evacuation simulation model, the floor field calculation method was improved. A cellular automaton pedestrian evacuation simulation model considering group behavior was established and applied to the evacuation scenario of students in a university campus cafeteria. The study found that under the different group configurations, the pedestrian ratios, and the pedestrian densities, the pedestrian evacuation efficiency had significant differences. The results showed that when the different group configurations existed in the scenario, the higher the proportion of the pedestrians with three-person front-to-back group configurations, the higher the evacuation efficiency. When only one type of the group configuration existed in the scenario, at low pedestrian density, the evacuation efficiency of the individual pedestrian groups was higher compared to the other six group configurations. While at high pedestrian density, the evacuation efficiency of the three-person front-to-back group configurations was higher. These findings provided important references for pedestrian evacuation in university campus cafeterias and provided insights for the simulation research of group pedestrian evacuation models, contributing to enhancing campus safety management and ensuring the safety of teachers, students, and staff.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130138"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006472","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As a crowded place on the university campus, the cafeteria inevitably has many safety hazards, such as fire accidents caused by open flames and large appliances, stampede accidents caused by overcrowding during peak dining hours, etc. Therefore, studying pedestrian evacuation in university campus cafeterias is particularly necessary. Pedestrians on campus mostly travel in groups. Previous studies mainly used continuous models to discuss pedestrian group evacuation behavior. In this study, based on the cellular automaton pedestrian evacuation simulation model, the floor field calculation method was improved. A cellular automaton pedestrian evacuation simulation model considering group behavior was established and applied to the evacuation scenario of students in a university campus cafeteria. The study found that under the different group configurations, the pedestrian ratios, and the pedestrian densities, the pedestrian evacuation efficiency had significant differences. The results showed that when the different group configurations existed in the scenario, the higher the proportion of the pedestrians with three-person front-to-back group configurations, the higher the evacuation efficiency. When only one type of the group configuration existed in the scenario, at low pedestrian density, the evacuation efficiency of the individual pedestrian groups was higher compared to the other six group configurations. While at high pedestrian density, the evacuation efficiency of the three-person front-to-back group configurations was higher. These findings provided important references for pedestrian evacuation in university campus cafeterias and provided insights for the simulation research of group pedestrian evacuation models, contributing to enhancing campus safety management and ensuring the safety of teachers, students, and staff.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.