{"title":"Relative weak compactness in infinite-dimensional Fefferman-Meyer duality","authors":"Vasily Melnikov","doi":"10.1016/j.jmaa.2024.128969","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>E</em> be a Banach space such that <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> has the Radon-Nikodým property. The aim of this work is to connect relative weak compactness in the <em>E</em>-valued martingale Hardy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span> to a convex compactness criterion in a weaker topology, such as the topology of uniform convergence on compacts in measure. These results represent a dynamic version of the deep result of Diestel, Ruess, and Schachermayer on relative weak compactness in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>. In the reflexive case, we obtain a Kadec-Pełczyński dichotomy for <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>-bounded sequences, which decomposes a subsequence into a relatively weakly compact part, a pointwise weakly convexly convergent part, and a null part converging to zero uniformly on compacts in measure. As a corollary, we investigate a parameterized version of the vector-valued Komlós theorem without the assumption of <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>μ</mi><mo>,</mo><mi>E</mi><mo>)</mo></math></span>-boundedness.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008916","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Let E be a Banach space such that has the Radon-Nikodým property. The aim of this work is to connect relative weak compactness in the E-valued martingale Hardy space to a convex compactness criterion in a weaker topology, such as the topology of uniform convergence on compacts in measure. These results represent a dynamic version of the deep result of Diestel, Ruess, and Schachermayer on relative weak compactness in . In the reflexive case, we obtain a Kadec-Pełczyński dichotomy for -bounded sequences, which decomposes a subsequence into a relatively weakly compact part, a pointwise weakly convexly convergent part, and a null part converging to zero uniformly on compacts in measure. As a corollary, we investigate a parameterized version of the vector-valued Komlós theorem without the assumption of -boundedness.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.