Michael Tritthart , Davide Vanzo , Victor Chavarrías , Annunziato Siviglia , Kees Sloff , Erik Mosselman
{"title":"Why do published models for fluvial and estuarine morphodynamics use unrealistic representations of the effects of transverse bed slopes?","authors":"Michael Tritthart , Davide Vanzo , Victor Chavarrías , Annunziato Siviglia , Kees Sloff , Erik Mosselman","doi":"10.1016/j.advwatres.2024.104831","DOIUrl":null,"url":null,"abstract":"<div><div>The sediment transport direction is affected by the bed slope. This effect is of crucial importance for two- and three-dimensional modelling of the interaction between the flow of water and the alluvial bed. It is not uncommon to find applications of numerical morphodynamic models in the literature that exaggerate the effects of transverse bed slopes on sediment transport compared to results from laboratory experiments. We investigate mathematically the consequences of such an approach, and we analyse through numerical simulations different explanations for the need to apply deviating values. The study reveals that the reason often lies in the setup of the numerical models, such as the choice of mesh resolution or the necessity to comply with specific aspects of the numerical scheme. The missing or inadequate implementation of physical processes in the model is another cause. All of these effects can be compensated by artificial diffusion added through the bed slope effect coefficients. Since increased diffusion strongly alters the physical processes of self-formed bed morphology, we recommend that modellers address the root causes of inflated erosion and deposition. Bed slope effect coefficients should be applied within the range found in the original publications.</div></div>","PeriodicalId":7614,"journal":{"name":"Advances in Water Resources","volume":"193 ","pages":"Article 104831"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Water Resources","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0309170824002185","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
The sediment transport direction is affected by the bed slope. This effect is of crucial importance for two- and three-dimensional modelling of the interaction between the flow of water and the alluvial bed. It is not uncommon to find applications of numerical morphodynamic models in the literature that exaggerate the effects of transverse bed slopes on sediment transport compared to results from laboratory experiments. We investigate mathematically the consequences of such an approach, and we analyse through numerical simulations different explanations for the need to apply deviating values. The study reveals that the reason often lies in the setup of the numerical models, such as the choice of mesh resolution or the necessity to comply with specific aspects of the numerical scheme. The missing or inadequate implementation of physical processes in the model is another cause. All of these effects can be compensated by artificial diffusion added through the bed slope effect coefficients. Since increased diffusion strongly alters the physical processes of self-formed bed morphology, we recommend that modellers address the root causes of inflated erosion and deposition. Bed slope effect coefficients should be applied within the range found in the original publications.
期刊介绍:
Advances in Water Resources provides a forum for the presentation of fundamental scientific advances in the understanding of water resources systems. The scope of Advances in Water Resources includes any combination of theoretical, computational, and experimental approaches used to advance fundamental understanding of surface or subsurface water resources systems or the interaction of these systems with the atmosphere, geosphere, biosphere, and human societies. Manuscripts involving case studies that do not attempt to reach broader conclusions, research on engineering design, applied hydraulics, or water quality and treatment, as well as applications of existing knowledge that do not advance fundamental understanding of hydrological processes, are not appropriate for Advances in Water Resources.
Examples of appropriate topical areas that will be considered include the following:
• Surface and subsurface hydrology
• Hydrometeorology
• Environmental fluid dynamics
• Ecohydrology and ecohydrodynamics
• Multiphase transport phenomena in porous media
• Fluid flow and species transport and reaction processes