Zhengyuan Li , Lin Hao , Shenghong Chen , Wenhan Fu , Hui Zhang , Zongsheng Yin , Yin Wang , Jun Wang
{"title":"Forkhead box C1 promotes the pathology of osteoarthritis in subchondral bone osteoblasts via the Piezo1/YAP axis","authors":"Zhengyuan Li , Lin Hao , Shenghong Chen , Wenhan Fu , Hui Zhang , Zongsheng Yin , Yin Wang , Jun Wang","doi":"10.1016/j.cellsig.2024.111463","DOIUrl":null,"url":null,"abstract":"<div><div>Subchondral bone sclerosis is a key characteristic of osteoarthritis (OA). Prior research has shown that Forkhead box C1 (FoxC1) plays a role in the synovial inflammation of OA, but its specific role in the subchondral bone of OA has not been explored. Our research revealed elevated expression levels of FoxC1 and Piezo1 in OA subchondral bone tissues. Further experiments on OA subchondral bone osteoblasts with FoxC1 or Piezo1 overexpression showed increased cell proliferation activity, expression of Yes-associated Protein 1 (YAP) and osteogenic markers, and secretion of proinflammatory factors. Mechanistically, the overexpression of FoxC1 through Piezo1 activation, in combination with downstream YAP signaling, led to increased levels of alkaline phosphatase (ALP), collagen type 1 (COL1) A1, RUNX2, Osteocalcin, matrix metalloproteinase (MMP) 3, and MMP9 expression. Notably, inhibition of Piezo1 reversed the regulatory function of FoxC1. The binding of FoxC1 to the targeted area (ATATTTATTTA, residues +612 to +622) and the activation of Piezo1 transcription were verified by the dual luciferase assays. Additionally, Reduced subchondral osteosclerosis and microangiogenesis were observed in knee joints from FoxC1-conditional knockout (CKO) and Piezo1-CKO mice, indicating reduced lesions. Collectively, our study reveals the significant involvement of FoxC1 in the pathologic process of OA subchondral bone via the Piezo1/YAP signaling pathway, potentially establishing a novel therapeutic target.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"124 ","pages":"Article 111463"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824004364","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Subchondral bone sclerosis is a key characteristic of osteoarthritis (OA). Prior research has shown that Forkhead box C1 (FoxC1) plays a role in the synovial inflammation of OA, but its specific role in the subchondral bone of OA has not been explored. Our research revealed elevated expression levels of FoxC1 and Piezo1 in OA subchondral bone tissues. Further experiments on OA subchondral bone osteoblasts with FoxC1 or Piezo1 overexpression showed increased cell proliferation activity, expression of Yes-associated Protein 1 (YAP) and osteogenic markers, and secretion of proinflammatory factors. Mechanistically, the overexpression of FoxC1 through Piezo1 activation, in combination with downstream YAP signaling, led to increased levels of alkaline phosphatase (ALP), collagen type 1 (COL1) A1, RUNX2, Osteocalcin, matrix metalloproteinase (MMP) 3, and MMP9 expression. Notably, inhibition of Piezo1 reversed the regulatory function of FoxC1. The binding of FoxC1 to the targeted area (ATATTTATTTA, residues +612 to +622) and the activation of Piezo1 transcription were verified by the dual luciferase assays. Additionally, Reduced subchondral osteosclerosis and microangiogenesis were observed in knee joints from FoxC1-conditional knockout (CKO) and Piezo1-CKO mice, indicating reduced lesions. Collectively, our study reveals the significant involvement of FoxC1 in the pathologic process of OA subchondral bone via the Piezo1/YAP signaling pathway, potentially establishing a novel therapeutic target.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.