Artificial protective layers of zinc metal anodes for reversible aqueous zinc ion batteries

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
{"title":"Artificial protective layers of zinc metal anodes for reversible aqueous zinc ion batteries","authors":"","doi":"10.1016/j.coelec.2024.101594","DOIUrl":null,"url":null,"abstract":"<div><div>Aqueous zinc ion batteries (AZIBs) are ideal candidates for next-generation energy storage technologies because they possess satisfactory safety, environmental friendliness, natural abundance, high theoretical specific capacity, and suitable redox potential. However, AZIBs are suffering serious anode issues, which limit their practical applications. To overcome these problems, architecting artificial protective layer (APL) on zinc metal is one of common modification strategies, which can effectively surpass the side reactions and dendrite generation by the designed functional coverings. In this review, we discuss the different materials applied in the APL and the corresponding specific working mechanism for anode optimization, as well as the challenges and perspectives of the strategies for APLs. The review aims at providing general principles and suggestions on the development of advanced anodes for AZIBs.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910324001558","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc ion batteries (AZIBs) are ideal candidates for next-generation energy storage technologies because they possess satisfactory safety, environmental friendliness, natural abundance, high theoretical specific capacity, and suitable redox potential. However, AZIBs are suffering serious anode issues, which limit their practical applications. To overcome these problems, architecting artificial protective layer (APL) on zinc metal is one of common modification strategies, which can effectively surpass the side reactions and dendrite generation by the designed functional coverings. In this review, we discuss the different materials applied in the APL and the corresponding specific working mechanism for anode optimization, as well as the challenges and perspectives of the strategies for APLs. The review aims at providing general principles and suggestions on the development of advanced anodes for AZIBs.
用于可逆锌离子水电池的锌金属阳极人工保护层
锌离子水电池(AZIBs)具有令人满意的安全性、环境友好性、天然丰富性、高理论比容量和合适的氧化还原电势,因此是下一代储能技术的理想候选材料。然而,AZIB 存在严重的阳极问题,限制了其实际应用。为了克服这些问题,在锌金属上构建人工保护层(APL)是常用的改性策略之一,通过设计功能性覆盖层可以有效地克服副反应和枝晶的产生。在这篇综述中,我们讨论了应用于 APL 的不同材料和相应的阳极优化具体工作机制,以及 APL 策略所面临的挑战和前景。本综述旨在为 AZIB 先进阳极的开发提供一般原则和建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信