Weiwei Tie , Surjya Sarathi Bhattacharyya , Tianci Ma , Shuangyi Yuan , Minghan Chen , Weiwei He , Seung Hee Lee
{"title":"Improving photoexcited carrier separation through Z-scheme W18O49/BiOBr heterostructure coupling carbon quantum dots for efficient photoelectric response and tetracycline photodegradation","authors":"Weiwei Tie , Surjya Sarathi Bhattacharyya , Tianci Ma , Shuangyi Yuan , Minghan Chen , Weiwei He , Seung Hee Lee","doi":"10.1016/j.carbon.2024.119707","DOIUrl":null,"url":null,"abstract":"<div><div>Building Z-scheme heterostructure integrating oxygen vacancies seems to effectively encourage photoexcited charge partition and hence photoelectric response and photocatalytic performance. Here, through the inclusion of carbon quantum dots (CQDs) with W<sub>18</sub>O<sub>49</sub>/BiOBr (WB) for enhancing electron exchange and band structure control, we have developed one Z-scheme ternary CQD/W<sub>18</sub>O<sub>49</sub>/BiOBr heterostructures (CWB) with intense oxygen vacancies. The optimal CWB heterostructure shows superior photocatalytic and photoelectric response execution. The findings indicate that CWB has higher photocatalytic degradation efficiency of tetracycline hydrochloride (TC) at 97 % compared to WB or W<sub>18</sub>O<sub>49</sub> alone. Additionally, the CWB shows a higher photocurrent density, surpassing WB and W<sub>18</sub>O<sub>49</sub> by 2.5 times and 5.4 times. A potential self-supplied photoelectrochemical-type photodetector utilizing CWB displays relatively quick and stable photoelectric response at 0 V. The improved photo-electric performance are linked to the combined impact of separation and redistribution of charges caused by Z-scheme heterostructure and oxygen vacancies, as well as intensive light absorbance by localized surface plasmon resonance. Our research also validates significance of CQDs as cocatalyst in accelerating the splitting of photo carriers in Z-scheme ternary CWB heterostructures, which will stimulate interest in creating advanced photoactive heterojunction substance with carbon nanomaterials.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"231 ","pages":"Article 119707"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324009266","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Building Z-scheme heterostructure integrating oxygen vacancies seems to effectively encourage photoexcited charge partition and hence photoelectric response and photocatalytic performance. Here, through the inclusion of carbon quantum dots (CQDs) with W18O49/BiOBr (WB) for enhancing electron exchange and band structure control, we have developed one Z-scheme ternary CQD/W18O49/BiOBr heterostructures (CWB) with intense oxygen vacancies. The optimal CWB heterostructure shows superior photocatalytic and photoelectric response execution. The findings indicate that CWB has higher photocatalytic degradation efficiency of tetracycline hydrochloride (TC) at 97 % compared to WB or W18O49 alone. Additionally, the CWB shows a higher photocurrent density, surpassing WB and W18O49 by 2.5 times and 5.4 times. A potential self-supplied photoelectrochemical-type photodetector utilizing CWB displays relatively quick and stable photoelectric response at 0 V. The improved photo-electric performance are linked to the combined impact of separation and redistribution of charges caused by Z-scheme heterostructure and oxygen vacancies, as well as intensive light absorbance by localized surface plasmon resonance. Our research also validates significance of CQDs as cocatalyst in accelerating the splitting of photo carriers in Z-scheme ternary CWB heterostructures, which will stimulate interest in creating advanced photoactive heterojunction substance with carbon nanomaterials.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.