{"title":"Open-set long-tailed recognition via orthogonal prototype learning and false rejection correction","authors":"Binquan Deng, Aouaidjia Kamel, Chongsheng Zhang","doi":"10.1016/j.neunet.2024.106789","DOIUrl":null,"url":null,"abstract":"<div><div>Learning from data with long-tailed and open-ended distributions is highly challenging. In this work, we propose <strong>OLPR</strong>, which is a new dual-stream <strong>O</strong>pen-set <strong>L</strong>ong-tailed recognition framework based on orthogonal <strong>P</strong>rototype learning and false <strong>R</strong>ejection correction. It consists of a Probabilistic Prediction Learning (PPL) branch and a Distance Metric Learning (DML) branch. The former is used to generate prediction probability for image classification. The latter learns orthogonal prototypes for each class by computing three distance losses, which are the orthogonal prototype loss among all the prototypes, the balanced Softmin distance based cross-entropy loss between each prototype and its corresponding input sample, and the adversarial loss for making the open-set space more compact. Furthermore, for open-set learning, instead of merely relying on binary decisions, we propose an Iterative Clustering Module (ICM) to categorize similar open-set samples and correct the false rejected closed-set samples simultaneously. If a sample is detected as a false rejection, i.e., a sample of the known classes is incorrectly identified as belonging to the unknown classes, we will re-classify the sample to the closest known/closed-set class. We conduct extensive experiments on ImageNet-LT, Places-LT, CIFAR-10/100-LT benchmark datasets, as well as a new long-tailed open-ended dataset that we build. Experimental results demonstrate that OLPR improves over the best competitors by up to 2.2% in terms of overall classification accuracy in closed-set settings, and up to 4% in terms of F-measure in open-set settings, which are very remarkable.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106789"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024007135","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Learning from data with long-tailed and open-ended distributions is highly challenging. In this work, we propose OLPR, which is a new dual-stream Open-set Long-tailed recognition framework based on orthogonal Prototype learning and false Rejection correction. It consists of a Probabilistic Prediction Learning (PPL) branch and a Distance Metric Learning (DML) branch. The former is used to generate prediction probability for image classification. The latter learns orthogonal prototypes for each class by computing three distance losses, which are the orthogonal prototype loss among all the prototypes, the balanced Softmin distance based cross-entropy loss between each prototype and its corresponding input sample, and the adversarial loss for making the open-set space more compact. Furthermore, for open-set learning, instead of merely relying on binary decisions, we propose an Iterative Clustering Module (ICM) to categorize similar open-set samples and correct the false rejected closed-set samples simultaneously. If a sample is detected as a false rejection, i.e., a sample of the known classes is incorrectly identified as belonging to the unknown classes, we will re-classify the sample to the closest known/closed-set class. We conduct extensive experiments on ImageNet-LT, Places-LT, CIFAR-10/100-LT benchmark datasets, as well as a new long-tailed open-ended dataset that we build. Experimental results demonstrate that OLPR improves over the best competitors by up to 2.2% in terms of overall classification accuracy in closed-set settings, and up to 4% in terms of F-measure in open-set settings, which are very remarkable.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.