On the biggest purely non-free conformal actions on compact Riemann surfaces and their asymptotic properties

IF 0.8 2区 数学 Q2 MATHEMATICS
C. Bagiński , G. Gromadzki , R.A. Hidalgo
{"title":"On the biggest purely non-free conformal actions on compact Riemann surfaces and their asymptotic properties","authors":"C. Bagiński ,&nbsp;G. Gromadzki ,&nbsp;R.A. Hidalgo","doi":"10.1016/j.jalgebra.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>A continuous action of a finite group <em>G</em> on a closed orientable surface <em>X</em> is said to be gpnf (Gilman purely non-free) if every element of <em>G</em> has a fixed point on <em>X</em>. We prove that the biggest order <span><math><mi>μ</mi><mo>(</mo><mi>g</mi><mo>)</mo></math></span>, of a gpnf-action on a surface of even genus <span><math><mi>g</mi><mo>≥</mo><mn>2</mn></math></span>, is bounded below by 8<em>g</em> and that this bound is sharp for infinitely many even <em>g</em> as well. This provides, for even genera, a gpnf-action analog of the celebrated Accola-Maclachlan bound <span><math><mn>8</mn><mi>g</mi><mo>+</mo><mn>8</mn></math></span> for arbitrary finite continuous actions. We also describe the asymptotic behavior of <em>μ</em>. We define <span><math><mi>M</mi></math></span> as the set of values of the function <span><math><mover><mrow><mi>μ</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><mi>g</mi><mo>)</mo><mo>=</mo><mi>μ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>/</mo><mo>(</mo><mi>g</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> and its subsets <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>−</mo></mrow></msub></math></span> corresponding to even and odd genera <em>g</em>. We show that the set <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, of accumulation points of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, consists of a single number 8. If <em>g</em> is odd, then we prove that <span><math><mn>4</mn><mi>g</mi><mo>≤</mo><mi>μ</mi><mo>(</mo><mi>g</mi><mo>)</mo><mo>&lt;</mo><mn>8</mn><mi>g</mi></math></span>. We conjecture that this lower bound is sharp for infinitely many odd <em>g</em>. Finally, we prove that this conjecture implies that 4 is the only element of <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mo>−</mo></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, leading to <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>=</mo><mo>{</mo><mn>4</mn><mo>,</mo><mn>8</mn><mo>}</mo></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"663 ","pages":"Pages 630-651"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005192","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A continuous action of a finite group G on a closed orientable surface X is said to be gpnf (Gilman purely non-free) if every element of G has a fixed point on X. We prove that the biggest order μ(g), of a gpnf-action on a surface of even genus g2, is bounded below by 8g and that this bound is sharp for infinitely many even g as well. This provides, for even genera, a gpnf-action analog of the celebrated Accola-Maclachlan bound 8g+8 for arbitrary finite continuous actions. We also describe the asymptotic behavior of μ. We define M as the set of values of the function μ˜(g)=μ(g)/(g+1) and its subsets M+ and M corresponding to even and odd genera g. We show that the set M+d, of accumulation points of M+, consists of a single number 8. If g is odd, then we prove that 4gμ(g)<8g. We conjecture that this lower bound is sharp for infinitely many odd g. Finally, we prove that this conjecture implies that 4 is the only element of Md, leading to Md={4,8}.
论紧凑黎曼曲面上最大的纯非自由共形作用及其渐近特性
如果 G 的每个元素在 X 上都有一个定点,那么有限群 G 在封闭可定向曲面 X 上的连续作用被称为 gpnf(吉尔曼纯非自由)作用。我们证明,偶数属 g≥2 的曲面上的 gpnf 作用的最大阶 μ(g),其下限为 8g,并且这个下限对于无穷多个偶数属 g 也是尖锐的。这就为偶数属提供了著名的任意有限连续作用的阿克拉-麦克拉克伦界 8g+8 的 gpnf 作用类似物。我们还描述了 μ 的渐近行为。我们将 M 定义为函数 μ˜(g)=μ(g)/(g+1)的值集及其对应于偶数和奇数属 g 的子集 M+ 和 M-。如果 g 是奇数,那么我们证明 4g≤μ(g)<8g。最后,我们证明这一猜想意味着 4 是 M-d 的唯一元素,从而得出 Md={4,8}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信