The Steinberg tensor product theorem for general linear group schemes in the Verlinde category

Pub Date : 2024-10-11 DOI:10.1016/j.jalgebra.2024.10.003
Arun S. Kannan
{"title":"The Steinberg tensor product theorem for general linear group schemes in the Verlinde category","authors":"Arun S. Kannan","doi":"10.1016/j.jalgebra.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>The Steinberg tensor product theorem is a fundamental result in the modular representation theory of reductive algebraic groups. It describes any finite-dimensional simple module of highest weight <em>λ</em> over such a group as the tensor product of Frobenius twists of simple modules with highest weights the weights appearing in a <em>p</em>-adic decomposition of <em>λ</em>, thereby reducing the character problem to a finite collection of weights. In recent years this theorem has been extended to various quasi-reductive supergroup schemes. In this paper, we prove the analogous result for the general linear group scheme <span><math><mi>G</mi><mi>L</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> for any object <em>X</em> in the Verlinde category <span><math><msub><mrow><mi>Ver</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Steinberg tensor product theorem is a fundamental result in the modular representation theory of reductive algebraic groups. It describes any finite-dimensional simple module of highest weight λ over such a group as the tensor product of Frobenius twists of simple modules with highest weights the weights appearing in a p-adic decomposition of λ, thereby reducing the character problem to a finite collection of weights. In recent years this theorem has been extended to various quasi-reductive supergroup schemes. In this paper, we prove the analogous result for the general linear group scheme GL(X) for any object X in the Verlinde category Verp.
分享
查看原文
韦林德范畴中一般线性群方案的斯坦伯格张量积定理
斯坦伯格张量积定理是还原代数群的模块表示理论中的一个基本结果。它描述了在这样一个群上的任何有限维最高权重简单模块λ,作为最高权重简单模块的弗罗贝纽斯捻的张量积,其权重出现在λ的p-adic分解中,从而将特征问题简化为权重的有限集合。近年来,这一定理被扩展到各种准还原超群方案。在本文中,我们证明了一般线性群方案 GL(X) 对于 Verlinde 范畴 Verp 中任何对象 X 的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信