Seyyed Hossein Khatami , Hamed Khanifar , Ahmad Movahedpour , Mortaza Taheri-Anganeh , Sajad Ehtiati , Hadi Khanifar , Amir Asadi
{"title":"Electrochemical biosensors in early detection of Parkinson disease","authors":"Seyyed Hossein Khatami , Hamed Khanifar , Ahmad Movahedpour , Mortaza Taheri-Anganeh , Sajad Ehtiati , Hadi Khanifar , Amir Asadi","doi":"10.1016/j.cca.2024.120001","DOIUrl":null,"url":null,"abstract":"<div><div>Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting the motor system, with symptoms including tremors, rigidity, bradykinesia, and postural instability. Affecting over six million people globally, PD’s pathophysiology is marked by the loss of dopaminergic neurons in the substantia nigra. Early diagnosis is crucial for effective management, yet current methods are limited by low sensitivity, high cost, and the need for advanced equipment. Electrochemical biosensors have emerged as promising tools for early PD diagnosis, converting biological reactions into measurable electrical signals for evaluating PD biomarkers. Advances in nanotechnology and material science have led to innovative sensing platforms with enhanced sensitivity and selectivity. Key biomarkers such as alpha-synuclein (α-syn), dopamine (DA), and microRNAs (miRNAs) have been targeted using these biosensors. For instance, gold nanoparticle-modified graphene immunosensors have shown ultra-sensitive detection of α-syn, while graphene-based biosensors have demonstrated high sensitivity for DA detection. Additionally, nanobiosensors for miR-195 and electrochemical aptasensors have shown potential for early PD diagnosis. The integration of nanomaterials like gold nanoparticles, quantum dots, and carbon nanotubes has further advanced the field, enhancing electrochemical activity and sensitivity. These developments offer a reliable, rapid, and cost-effective approach for early PD diagnosis, paving the way for better management and treatment. Continued research is essential for the commercialization and clinical integration of these biosensors, ultimately improving patient outcomes.</div></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":"565 ","pages":"Article 120001"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000989812402254X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting the motor system, with symptoms including tremors, rigidity, bradykinesia, and postural instability. Affecting over six million people globally, PD’s pathophysiology is marked by the loss of dopaminergic neurons in the substantia nigra. Early diagnosis is crucial for effective management, yet current methods are limited by low sensitivity, high cost, and the need for advanced equipment. Electrochemical biosensors have emerged as promising tools for early PD diagnosis, converting biological reactions into measurable electrical signals for evaluating PD biomarkers. Advances in nanotechnology and material science have led to innovative sensing platforms with enhanced sensitivity and selectivity. Key biomarkers such as alpha-synuclein (α-syn), dopamine (DA), and microRNAs (miRNAs) have been targeted using these biosensors. For instance, gold nanoparticle-modified graphene immunosensors have shown ultra-sensitive detection of α-syn, while graphene-based biosensors have demonstrated high sensitivity for DA detection. Additionally, nanobiosensors for miR-195 and electrochemical aptasensors have shown potential for early PD diagnosis. The integration of nanomaterials like gold nanoparticles, quantum dots, and carbon nanotubes has further advanced the field, enhancing electrochemical activity and sensitivity. These developments offer a reliable, rapid, and cost-effective approach for early PD diagnosis, paving the way for better management and treatment. Continued research is essential for the commercialization and clinical integration of these biosensors, ultimately improving patient outcomes.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.