{"title":"Complete genome and carbohydrate-active enzymes of Arenibacter antarcticus KCTC 52924T isolated from deep sea sediment of Ross Sea, Antarctica","authors":"Kyuin Hwang , Hanna Choe , Kyung Mo Kim","doi":"10.1016/j.margen.2024.101149","DOIUrl":null,"url":null,"abstract":"<div><div>Members of the genus <em>Arenibacter</em> were widely distributed in oceanic habitats around the world and have been studied for a variety of useful properties, including antigen deactivation, pollutant degradation, and the production of antimicrobial agents. <em>Arenibacter antarcticus</em> KCTC 52924<sup>T</sup> of our interest is an aerobic, non-motile, Gram-negative, psychrotolerant type strain isolated from the deep-sea sediment of Ross Sea, Antarctica. The extreme conditions of this habitat are believed to have diversified the substrate spectrum and range of operational conditions of the enzymes, offering both scientific interest and potential industrial benefits. Here, we obtained the complete genome sequence of this promising strain, which consists of 4,694,007 bp (G + C content of 38.8 %) with a single chromosome, 3917 protein-coding genes, 43 tRNAs, and 3 rRNA operons. The functional annotations of the genome reveal four metabolite biosynthesis clusters and a variety of carbohydrate-active enzymes with potential biotechnological applications. Additionally, several interesting features related to environmental interactions were identified. Therefore, this genome data and its genomic potentials figured out in this study serve as a conner stone in further study aimed at understanding physiology of this strain which may be valuable in biotechnological purpose.</div></div>","PeriodicalId":18321,"journal":{"name":"Marine genomics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine genomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874778724000679","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Members of the genus Arenibacter were widely distributed in oceanic habitats around the world and have been studied for a variety of useful properties, including antigen deactivation, pollutant degradation, and the production of antimicrobial agents. Arenibacter antarcticus KCTC 52924T of our interest is an aerobic, non-motile, Gram-negative, psychrotolerant type strain isolated from the deep-sea sediment of Ross Sea, Antarctica. The extreme conditions of this habitat are believed to have diversified the substrate spectrum and range of operational conditions of the enzymes, offering both scientific interest and potential industrial benefits. Here, we obtained the complete genome sequence of this promising strain, which consists of 4,694,007 bp (G + C content of 38.8 %) with a single chromosome, 3917 protein-coding genes, 43 tRNAs, and 3 rRNA operons. The functional annotations of the genome reveal four metabolite biosynthesis clusters and a variety of carbohydrate-active enzymes with potential biotechnological applications. Additionally, several interesting features related to environmental interactions were identified. Therefore, this genome data and its genomic potentials figured out in this study serve as a conner stone in further study aimed at understanding physiology of this strain which may be valuable in biotechnological purpose.
期刊介绍:
The journal publishes papers on all functional and evolutionary aspects of genes, chromatin, chromosomes and (meta)genomes of marine (and freshwater) organisms. It deals with new genome-enabled insights into the broader framework of environmental science. Topics within the scope of this journal include:
• Population genomics and ecology
• Evolutionary and developmental genomics
• Comparative genomics
• Metagenomics
• Environmental genomics
• Systems biology
More specific topics include: geographic and phylogenomic characterization of aquatic organisms, metabolic capacities and pathways of organisms and communities, biogeochemical cycles, genomics and integrative approaches applied to microbial ecology including (meta)transcriptomics and (meta)proteomics, tracking of infectious diseases, environmental stress, global climate change and ecosystem modelling.