Barun Kumar Chakrabarti , Mengzheng Ouyang , Baidaa Alkhateab , J. Rubio-Garcia , Koray Bahadır Dönmez , Zehra Çobandede , Reza Afshar Ghotli , Serap Hayat Soytaş , Mustafa Kemal Bayazıt , Yashar S. Hajimolana , Pejman Kazempoor , Metin Gençten , Chee Tong John Low , Nigel P. Brandon
{"title":"Enhancement in the performance of a vanadium-manganese redox flow battery using electrospun carbon metal-based electrode catalysts","authors":"Barun Kumar Chakrabarti , Mengzheng Ouyang , Baidaa Alkhateab , J. Rubio-Garcia , Koray Bahadır Dönmez , Zehra Çobandede , Reza Afshar Ghotli , Serap Hayat Soytaş , Mustafa Kemal Bayazıt , Yashar S. Hajimolana , Pejman Kazempoor , Metin Gençten , Chee Tong John Low , Nigel P. Brandon","doi":"10.1016/j.materresbull.2024.113140","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the performance of both a vanadium/manganese redox flow battery (V/Mn RFB) and an all-vanadium redox flow battery (VRFB), employing carbon metal fabrics (CMFs) prepared through electrospinning followed by carbonization. Noteworthy advancements are observed in both systems upon coupling CMFs with thermally treated graphite felt (GF) electrodes. Nearly doubled peak power density and 50 % higher capacity utilization over 150 charge/discharge cycles at 75 mA cm<sup>−2</sup> are achieved for the V/Mn RFB with the incorporation of CMFs alongside graphite felt as catalysts. The VRFB demonstrates notable enhancements too, achieving approximately 200 cycles at a current density of 80 mA cm<sup>−2</sup>, with high efficiencies (85 %) and electrolyte utilization (79 %) when CMFs are used in combination with graphite felts. These advancements may facilitate pilot-scale testing and integration of the V/Mn RFB for the employment in the renewable energy storage sector and grid-balancing studies.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"182 ","pages":"Article 113140"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540824004707","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the performance of both a vanadium/manganese redox flow battery (V/Mn RFB) and an all-vanadium redox flow battery (VRFB), employing carbon metal fabrics (CMFs) prepared through electrospinning followed by carbonization. Noteworthy advancements are observed in both systems upon coupling CMFs with thermally treated graphite felt (GF) electrodes. Nearly doubled peak power density and 50 % higher capacity utilization over 150 charge/discharge cycles at 75 mA cm−2 are achieved for the V/Mn RFB with the incorporation of CMFs alongside graphite felt as catalysts. The VRFB demonstrates notable enhancements too, achieving approximately 200 cycles at a current density of 80 mA cm−2, with high efficiencies (85 %) and electrolyte utilization (79 %) when CMFs are used in combination with graphite felts. These advancements may facilitate pilot-scale testing and integration of the V/Mn RFB for the employment in the renewable energy storage sector and grid-balancing studies.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.