New Analytical Solutions for Constant Rate Pumping in Two-Zone Double-Porosity Confined Aquifer: A New Source Term Reflecting Effects of Well Skin and Wellbore Storage
{"title":"New Analytical Solutions for Constant Rate Pumping in Two-Zone Double-Porosity Confined Aquifer: A New Source Term Reflecting Effects of Well Skin and Wellbore Storage","authors":"Chen Wang, Chenchen Tong, Hund-Der Yeh, Ching-Sheng Huang","doi":"10.1029/2024wr037472","DOIUrl":null,"url":null,"abstract":"This study develops two new analytical models for constant rate pumping at a partially penetrating well in a double-porosity confined aquifer, considering skin and formation zones. One model, referred to as the two-zone model, incorporates a flow equation to depict the flow in the skin around the well. The other model, named the source-term model, introduces a novel source term at the outer rim of the skin to reflect the effects of both the skin and wellbore storage. The analytical solutions for both models are derived by the Laplace transform and finite Fourier cosine transform. Additionally, a finite element solution for the source-term model is presented. Results suggest the source-term model is suitable to most wells when the width of the skin is less than 1 m and the radius of influence exceeds the outer rim of the skin. Temporal drawdown distribution for a negative skin exhibits a triple-humped shape with two flat stages, while that for a positive skin shows monotonous increase. The source-term model enables orthogonal 5 × 5 nodes for finite element approximation to discretize a well and its adjacent skin. The finite element solution aligns with early drawdown data measured at an observation well under the effects observed in two field constant rate pumping tests. In conclusion, this study introduces a novel approach to modeling two-zone flow, which may find practical utility in field applications.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"24 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr037472","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study develops two new analytical models for constant rate pumping at a partially penetrating well in a double-porosity confined aquifer, considering skin and formation zones. One model, referred to as the two-zone model, incorporates a flow equation to depict the flow in the skin around the well. The other model, named the source-term model, introduces a novel source term at the outer rim of the skin to reflect the effects of both the skin and wellbore storage. The analytical solutions for both models are derived by the Laplace transform and finite Fourier cosine transform. Additionally, a finite element solution for the source-term model is presented. Results suggest the source-term model is suitable to most wells when the width of the skin is less than 1 m and the radius of influence exceeds the outer rim of the skin. Temporal drawdown distribution for a negative skin exhibits a triple-humped shape with two flat stages, while that for a positive skin shows monotonous increase. The source-term model enables orthogonal 5 × 5 nodes for finite element approximation to discretize a well and its adjacent skin. The finite element solution aligns with early drawdown data measured at an observation well under the effects observed in two field constant rate pumping tests. In conclusion, this study introduces a novel approach to modeling two-zone flow, which may find practical utility in field applications.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.