Mackenzie Weygandt Mathis, Adriana Perez Rotondo, Edward F. Chang, Andreas S. Tolias, Alexander Mathis
{"title":"Decoding the brain: From neural representations to mechanistic models","authors":"Mackenzie Weygandt Mathis, Adriana Perez Rotondo, Edward F. Chang, Andreas S. Tolias, Alexander Mathis","doi":"10.1016/j.cell.2024.08.051","DOIUrl":null,"url":null,"abstract":"A central principle in neuroscience is that neurons within the brain act in concert to produce perception, cognition, and adaptive behavior. Neurons are organized into specialized brain areas, dedicated to different functions to varying extents, and their function relies on distributed circuits to continuously encode relevant environmental and body-state features, enabling other areas to decode (interpret) these representations for computing meaningful decisions and executing precise movements. Thus, the distributed brain can be thought of as a series of computations that act to encode and decode information. In this perspective, we detail important concepts of neural encoding and decoding and highlight the mathematical tools used to measure them, including deep learning methods. We provide case studies where decoding concepts enable foundational and translational science in motor, visual, and language processing.","PeriodicalId":9656,"journal":{"name":"Cell","volume":"14 1","pages":""},"PeriodicalIF":45.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2024.08.051","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A central principle in neuroscience is that neurons within the brain act in concert to produce perception, cognition, and adaptive behavior. Neurons are organized into specialized brain areas, dedicated to different functions to varying extents, and their function relies on distributed circuits to continuously encode relevant environmental and body-state features, enabling other areas to decode (interpret) these representations for computing meaningful decisions and executing precise movements. Thus, the distributed brain can be thought of as a series of computations that act to encode and decode information. In this perspective, we detail important concepts of neural encoding and decoding and highlight the mathematical tools used to measure them, including deep learning methods. We provide case studies where decoding concepts enable foundational and translational science in motor, visual, and language processing.
期刊介绍:
Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO).
The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries.
In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.