Mitigating noise in digital and digital–analog quantum computation

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Paula García-Molina, Ana Martin, Mikel Garcia de Andoin, Mikel Sanz
{"title":"Mitigating noise in digital and digital–analog quantum computation","authors":"Paula García-Molina, Ana Martin, Mikel Garcia de Andoin, Mikel Sanz","doi":"10.1038/s42005-024-01812-5","DOIUrl":null,"url":null,"abstract":"Noisy Intermediate-Scale Quantum (NISQ) devices lack error correction, limiting scalability for quantum algorithms. In this context, digital-analog quantum computing (DAQC) offers a more resilient alternative quantum computing paradigm that outperforms digital quantum computation by combining the flexibility of single-qubit gates with the robustness of analog simulations. This work explores the impact of noise on both digital and DAQC paradigms and demonstrates DAQC’s effectiveness in error mitigation. We compare the quantum Fourier transform and quantum phase estimation algorithms under a wide range of single and two-qubit noise sources in superconducting processors. DAQC consistently surpasses digital approaches in fidelity, particularly as processor size increases. Moreover, zero-noise extrapolation further enhances DAQC by mitigating decoherence and intrinsic errors, achieving fidelities above 0.95 for 8 qubits, and reducing computation errors to the order of 10−3. These results establish DAQC as a viable alternative for quantum computing in the NISQ era. The authors explore the digital-analog quantum computing paradigm, which combines fast single-qubit gates with the natural dynamics of quantum devices. They find the digital-analog paradigm more robust against certain experimental imperfections than the standard fully-digital one and successfully apply error mitigation techniques to this approach.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01812-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01812-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Noisy Intermediate-Scale Quantum (NISQ) devices lack error correction, limiting scalability for quantum algorithms. In this context, digital-analog quantum computing (DAQC) offers a more resilient alternative quantum computing paradigm that outperforms digital quantum computation by combining the flexibility of single-qubit gates with the robustness of analog simulations. This work explores the impact of noise on both digital and DAQC paradigms and demonstrates DAQC’s effectiveness in error mitigation. We compare the quantum Fourier transform and quantum phase estimation algorithms under a wide range of single and two-qubit noise sources in superconducting processors. DAQC consistently surpasses digital approaches in fidelity, particularly as processor size increases. Moreover, zero-noise extrapolation further enhances DAQC by mitigating decoherence and intrinsic errors, achieving fidelities above 0.95 for 8 qubits, and reducing computation errors to the order of 10−3. These results establish DAQC as a viable alternative for quantum computing in the NISQ era. The authors explore the digital-analog quantum computing paradigm, which combines fast single-qubit gates with the natural dynamics of quantum devices. They find the digital-analog paradigm more robust against certain experimental imperfections than the standard fully-digital one and successfully apply error mitigation techniques to this approach.

Abstract Image

降低数字量子计算和数模量子计算中的噪声
噪声中量子(NISQ)设备缺乏纠错功能,限制了量子算法的可扩展性。在这种情况下,数模量子计算(DAQC)通过将单量子比特门的灵活性与模拟仿真的鲁棒性相结合,提供了一种更具弹性的替代量子计算范式,其性能优于数字量子计算。这项研究探索了噪声对数字和 DAQC 模式的影响,并证明了 DAQC 在减少错误方面的有效性。我们比较了超导处理器中各种单量子比特和双量子比特噪声源下的量子傅立叶变换和量子相位估计算法。DAQC 在保真度方面始终超越数字方法,尤其是当处理器规模增大时。此外,零噪声外推法减轻了退相干和内在误差,使 8 量子位的保真度超过 0.95,并将计算误差减少到 10-3 数量级,从而进一步增强了 DAQC。这些结果使 DAQC 成为 NISQ 时代量子计算的可行替代方案。作者探索了数模量子计算范式,该范式结合了快速单量子比特门和量子设备的自然动力学。他们发现数模范式比标准的全数字范式更能抵御某些实验缺陷,并成功地将误差缓解技术应用到这种方法中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信