Harnessing synergy of spin and orbital currents in heavy metal/ferromagnet multilayers

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yumin Yang, Zhicheng Xie, Zhiyuan Zhao, Na Lei, Jianhua Zhao, Dahai Wei
{"title":"Harnessing synergy of spin and orbital currents in heavy metal/ferromagnet multilayers","authors":"Yumin Yang, Zhicheng Xie, Zhiyuan Zhao, Na Lei, Jianhua Zhao, Dahai Wei","doi":"10.1038/s42005-024-01829-w","DOIUrl":null,"url":null,"abstract":"Spin-orbitronics, exploiting electron spin and/or orbital angular momentum, offers a powerful route to energy-efficient spintronic applications. Recent research on orbital currents in light metals broadens the scope of spin-orbit torque (SOT). However, distinguishing and manipulating orbital torque in heavy metal/ferromagnet (HM/FM) remains a challenge, limiting the promising synergy of spin and orbital currents. Here, we design a HM/FM/FMSOC heterostructure and experimentally separate orbital torque contribution from spin torque by utilizing the distinct diffusion length of spin and orbital currents. Furthermore, we achieve the synergy of spin and orbital torques by controlling their relative strength, and obtain a 110% improvement in torque efficiency compared to the representative Pt/Co bilayer. Our findings not only contribute to a deeper understanding of SOT mechanisms and orbital current transport in HM/FM multilayers, but also highlight the promising prospect of orbital and spin torque synergy for optimizing the efficiency of next-generation spintronic devices. Eliminating the interference of spin current to distinguish and manipulate orbital torque in heavy metal/ferromagnet (HM/FM) heterojunction remains a challenge. Here, the authors design a HM/FM/FMSOC multilayer to separate orbital torque contribution and harness the synergy of spin and orbital currents for enhanced spin-orbit torque.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01829-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01829-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-orbitronics, exploiting electron spin and/or orbital angular momentum, offers a powerful route to energy-efficient spintronic applications. Recent research on orbital currents in light metals broadens the scope of spin-orbit torque (SOT). However, distinguishing and manipulating orbital torque in heavy metal/ferromagnet (HM/FM) remains a challenge, limiting the promising synergy of spin and orbital currents. Here, we design a HM/FM/FMSOC heterostructure and experimentally separate orbital torque contribution from spin torque by utilizing the distinct diffusion length of spin and orbital currents. Furthermore, we achieve the synergy of spin and orbital torques by controlling their relative strength, and obtain a 110% improvement in torque efficiency compared to the representative Pt/Co bilayer. Our findings not only contribute to a deeper understanding of SOT mechanisms and orbital current transport in HM/FM multilayers, but also highlight the promising prospect of orbital and spin torque synergy for optimizing the efficiency of next-generation spintronic devices. Eliminating the interference of spin current to distinguish and manipulate orbital torque in heavy metal/ferromagnet (HM/FM) heterojunction remains a challenge. Here, the authors design a HM/FM/FMSOC multilayer to separate orbital torque contribution and harness the synergy of spin and orbital currents for enhanced spin-orbit torque.

Abstract Image

在重金属/铁磁体多层膜中利用自旋和轨道电流的协同作用
自旋轨道电子学利用电子自旋和/或轨道角动量,为高能效自旋电子学应用提供了一条强大的途径。最近对轻金属中轨道电流的研究拓宽了自旋轨道力矩(SOT)的范围。然而,在重金属/铁磁体(HM/FM)中区分和操纵轨道力矩仍然是一个挑战,限制了自旋和轨道电流的协同作用。在这里,我们设计了一种 HM/FM/FMSOC 异质结构,并利用自旋电流和轨道电流不同的扩散长度,通过实验将轨道转矩贡献从自旋转矩中分离出来。此外,我们还通过控制自旋扭矩和轨道扭矩的相对强度来实现它们的协同作用,与具有代表性的铂/钴双层结构相比,扭矩效率提高了 110%。我们的发现不仅有助于加深对 HM/FM 多层中的 SOT 机制和轨道电流传输的理解,还凸显了轨道扭矩和自旋扭矩协同作用在优化下一代自旋电子器件效率方面的广阔前景。消除自旋电流的干扰以区分和操纵重金属/铁磁体(HM/FM)异质结中的轨道力矩仍然是一项挑战。在此,作者设计了一种 HM/FM/FMSOC 多层,以分离轨道力矩的贡献,并利用自旋和轨道电流的协同作用来增强自旋轨道力矩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信