{"title":"Circuit-noise-resilient virtual distillation","authors":"Xiao-Yue Xu, Chen Ding, Shuo Zhang, Wan-Su Bao, He-Liang Huang","doi":"10.1038/s42005-024-01815-2","DOIUrl":null,"url":null,"abstract":"Quantum error mitigation (QEM) is vital for improving quantum algorithms’ accuracy on noisy near-term devices. A typical QEM method, called Virtual Distillation (VD), can suffer from imperfect implementation, potentially leading to worse outcomes than without mitigation. To address this, we introduce Circuit-Noise-Resilient Virtual Distillation (CNR-VD), which includes a calibration process using simple input states to enhance VD’s performance despite circuit noise, aiming to recover the results of an ideally conducted VD circuit. Simulations show that CNR-VD significantly mitigates noise-induced errors in VD circuits, boosting accuracy by up to tenfold over standard VD. It provides positive error mitigation even under high noise, where standard VD fails. Furthermore, our estimator’s versatility extends its utility beyond VD, enhancing outcomes in general Hadamard-Test circuits. The proposed CNR-VD significantly enhances the noise-resilience of VD, and thus is anticipated to elevate the performance of quantum algorithm implementations on near-term quantum devices. This study focuses on reducing noise in the circuit used in the quantum error mitigation method called Virtual Distillation (VD). The authors introduce an approach which significantly enhances the noise tolerance of VD and improves the accuracy by an order of magnitude compared to the standard VD.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01815-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01815-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum error mitigation (QEM) is vital for improving quantum algorithms’ accuracy on noisy near-term devices. A typical QEM method, called Virtual Distillation (VD), can suffer from imperfect implementation, potentially leading to worse outcomes than without mitigation. To address this, we introduce Circuit-Noise-Resilient Virtual Distillation (CNR-VD), which includes a calibration process using simple input states to enhance VD’s performance despite circuit noise, aiming to recover the results of an ideally conducted VD circuit. Simulations show that CNR-VD significantly mitigates noise-induced errors in VD circuits, boosting accuracy by up to tenfold over standard VD. It provides positive error mitigation even under high noise, where standard VD fails. Furthermore, our estimator’s versatility extends its utility beyond VD, enhancing outcomes in general Hadamard-Test circuits. The proposed CNR-VD significantly enhances the noise-resilience of VD, and thus is anticipated to elevate the performance of quantum algorithm implementations on near-term quantum devices. This study focuses on reducing noise in the circuit used in the quantum error mitigation method called Virtual Distillation (VD). The authors introduce an approach which significantly enhances the noise tolerance of VD and improves the accuracy by an order of magnitude compared to the standard VD.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.