Multihead Attention U-Net for Magnetic Particle Imaging–Computed Tomography Image Segmentation

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS
Aniwat Juhong, Bo Li, Yifan Liu, Chia-Wei Yang, Cheng-You Yao, Dalen W. Agnew, Yu Leo Lei, Gary D. Luker, Harvey Bumpers, Xuefei Huang, Wibool Piyawattanametha, Zhen Qiu
{"title":"Multihead Attention U-Net for Magnetic Particle Imaging–Computed Tomography Image Segmentation","authors":"Aniwat Juhong,&nbsp;Bo Li,&nbsp;Yifan Liu,&nbsp;Chia-Wei Yang,&nbsp;Cheng-You Yao,&nbsp;Dalen W. Agnew,&nbsp;Yu Leo Lei,&nbsp;Gary D. Luker,&nbsp;Harvey Bumpers,&nbsp;Xuefei Huang,&nbsp;Wibool Piyawattanametha,&nbsp;Zhen Qiu","doi":"10.1002/aisy.202400007","DOIUrl":null,"url":null,"abstract":"<p>Magnetic particle imaging (MPI) is an emerging noninvasive molecular imaging modality with high sensitivity and specificity, exceptional linear quantitative ability, and potential for successful applications in clinical settings. Computed tomography (CT) is typically combined with the MPI image to obtain more anatomical information. Herein, a deep learning-based approach for MPI-CT image segmentation is presented. The dataset utilized in training the proposed deep learning model is obtained from a transgenic mouse model of breast cancer following administration of indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoworms (NWs-ICG) as the tracer. The NWs-ICG particles progressively accumulate in tumors due to the enhanced permeability and retention (EPR) effect. The proposed deep learning model exploits the advantages of the multihead attention mechanism and the U-Net model to perform segmentation on the MPI-CT images, showing superb results. In addition, the model is characterized with a different number of attention heads to explore the optimal number for our custom MPI-CT dataset.</p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 10","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202400007","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202400007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic particle imaging (MPI) is an emerging noninvasive molecular imaging modality with high sensitivity and specificity, exceptional linear quantitative ability, and potential for successful applications in clinical settings. Computed tomography (CT) is typically combined with the MPI image to obtain more anatomical information. Herein, a deep learning-based approach for MPI-CT image segmentation is presented. The dataset utilized in training the proposed deep learning model is obtained from a transgenic mouse model of breast cancer following administration of indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoworms (NWs-ICG) as the tracer. The NWs-ICG particles progressively accumulate in tumors due to the enhanced permeability and retention (EPR) effect. The proposed deep learning model exploits the advantages of the multihead attention mechanism and the U-Net model to perform segmentation on the MPI-CT images, showing superb results. In addition, the model is characterized with a different number of attention heads to explore the optimal number for our custom MPI-CT dataset.

Abstract Image

用于磁粉成像-计算机断层扫描图像分割的多头注意力 U-Net
磁粉成像(MPI)是一种新兴的无创分子成像方式,具有高灵敏度和高特异性、卓越的线性定量能力以及成功应用于临床的潜力。计算机断层扫描(CT)通常与 MPI 图像相结合,以获得更多的解剖信息。本文介绍了一种基于深度学习的 MPI-CT 图像分割方法。训练所提出的深度学习模型所使用的数据集来自乳腺癌转基因小鼠模型,该模型在施用吲哚菁绿(ICG)共轭超顺磁性氧化铁纳米虫(NWs-ICG)作为示踪剂后获得。由于增强的渗透性和滞留(EPR)效应,NWs-ICG 颗粒会在肿瘤中逐渐累积。所提出的深度学习模型利用了多头注意机制和 U-Net 模型的优势,对 MPI-CT 图像进行分割,取得了极佳的效果。此外,该模型还采用了不同数量的注意力头,以探索我们定制的 MPI-CT 数据集的最佳数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信