Biochar Production From Plastic-Contaminated Biomass

IF 5.9 3区 工程技术 Q1 AGRONOMY
Isabel Hilber, Nikolas Hagemann, José María de la Rosa, Heike Knicker, Thomas D. Bucheli, Hans-Peter Schmidt
{"title":"Biochar Production From Plastic-Contaminated Biomass","authors":"Isabel Hilber,&nbsp;Nikolas Hagemann,&nbsp;José María de la Rosa,&nbsp;Heike Knicker,&nbsp;Thomas D. Bucheli,&nbsp;Hans-Peter Schmidt","doi":"10.1111/gcbb.70005","DOIUrl":null,"url":null,"abstract":"<p>Anaerobic digestion and composting of biowastes are vital pathways to recycle carbon and nutrients for agriculture. However, plastic contamination of soil amendments and fertilizers made from biowastes is a relevant source of (micro-) plastics in (agricultural) ecosystems. To avoid this contamination, plastic containing biowastes could be pyrolyzed to eliminate the plastic, recycle most of the nutrients, and create carbon sinks when the resulting biochar is applied to soil. Literature suggests plastic elimination mainly by devolatilization at co-pyrolysis temperatures of &gt; 520°C. However, it is uncertain if the presence of plastic during biomass pyrolysis induces the formation of organic contaminants or has any other adverse effects on biochar properties. Here, we produced biochar from wood residues (WR) obtained from sieving of biowaste derived digestate. The plastic content was artificially enriched to 10%, and this mixture was pyrolyzed at 450°C and 600°C. Beech wood (BW) chips and the purified, that is, (macro-) plastic-free WR served as controls. All biochars produced were below limit values of the European Biochar Certificate (EBC) regarding trace element content and organic contaminants. Under study conditions, pyrolysis of biowaste, even when contaminated with plastic, can produce a biochar suitable for agricultural use. However, thermogravimetric and nuclear magnetic resonance spectroscopic analysis of the WR + 10% plastics biochar suggested the presence of plastic residues at pyrolysis temperatures of 450°C. More research is needed to define minimum requirements for the pyrolysis of plastic containing biowaste and to cope with the automated identification and determination of plastic types in biowaste at large scales.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 11","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70005","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70005","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Anaerobic digestion and composting of biowastes are vital pathways to recycle carbon and nutrients for agriculture. However, plastic contamination of soil amendments and fertilizers made from biowastes is a relevant source of (micro-) plastics in (agricultural) ecosystems. To avoid this contamination, plastic containing biowastes could be pyrolyzed to eliminate the plastic, recycle most of the nutrients, and create carbon sinks when the resulting biochar is applied to soil. Literature suggests plastic elimination mainly by devolatilization at co-pyrolysis temperatures of > 520°C. However, it is uncertain if the presence of plastic during biomass pyrolysis induces the formation of organic contaminants or has any other adverse effects on biochar properties. Here, we produced biochar from wood residues (WR) obtained from sieving of biowaste derived digestate. The plastic content was artificially enriched to 10%, and this mixture was pyrolyzed at 450°C and 600°C. Beech wood (BW) chips and the purified, that is, (macro-) plastic-free WR served as controls. All biochars produced were below limit values of the European Biochar Certificate (EBC) regarding trace element content and organic contaminants. Under study conditions, pyrolysis of biowaste, even when contaminated with plastic, can produce a biochar suitable for agricultural use. However, thermogravimetric and nuclear magnetic resonance spectroscopic analysis of the WR + 10% plastics biochar suggested the presence of plastic residues at pyrolysis temperatures of 450°C. More research is needed to define minimum requirements for the pyrolysis of plastic containing biowaste and to cope with the automated identification and determination of plastic types in biowaste at large scales.

Abstract Image

利用受塑料污染的生物质生产生物炭
生物废料的厌氧消化和堆肥是农业碳和养分循环利用的重要途径。然而,由生物废料制成的土壤改良剂和肥料中的塑料污染是(农业)生态系统中(微)塑料的一个相关来源。为避免这种污染,可对含有塑料的生物废料进行热解,以消除塑料,回收大部分养分,并在将产生的生物炭应用于土壤时形成碳汇。文献表明,在 520°C 的共热解温度下,消除塑料的主要方法是使其分解。然而,目前还不确定在生物质热解过程中塑料的存在是否会诱发有机污染物的形成或对生物炭特性产生任何其他不利影响。在这里,我们利用筛分生物垃圾衍生沼渣时获得的木材残渣(WR)生产生物炭。塑料含量被人为提高到 10%,这种混合物在 450°C 和 600°C 温度下进行热解。山毛榉木屑(BW)和纯化的,即不含(宏观)塑料的 WR 作为对照。生产出的所有生物炭在微量元素含量和有机污染物方面都低于欧洲生物炭证书(EBC)的限值。在研究条件下,热解生物垃圾,即使被塑料污染,也能产生适合农业使用的生物炭。然而,对 WR + 10% 塑料生物炭进行的热重分析和核磁共振光谱分析表明,在 450°C 的热解温度下存在塑料残留物。需要开展更多研究,以确定热解含塑料生物垃圾的最低要求,并应对大规模生物垃圾中塑料类型的自动识别和确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信