Steady and unsteady numerical investigation of mixed convective heat transfer enhancement in a channel with baffles attached to the heated wall

IF 0.5 4区 工程技术 Q4 ENGINEERING, AEROSPACE
H. Toumi, R. Henniche, A. Korichi
{"title":"Steady and unsteady numerical investigation of mixed convective heat transfer enhancement in a channel with baffles attached to the heated wall","authors":"H. Toumi,&nbsp;R. Henniche,&nbsp;A. Korichi","doi":"10.1134/S0869864324020069","DOIUrl":null,"url":null,"abstract":"<div><p>Numerical computation of aiding mixed convection and heat transfer characteristics in a channel with a baffled heated wall is carried out in this work. The equations of mass, momentum and energy, alongside the boundary conditions, are solved by the finite volume formulation using the open source OpenFOAM® code. Simulations are accomplished under different parameter combinations, including the Reynolds number, Grashof number, and baffle dimension. The results are presented in terms of streamlines, isotherm contours, Nusselt number, and friction factor. The results obtained revealed that the flow translates from steady to unsteady state at a relatively low value of Reynolds number. The unsteady flow behaviour contributes to improve heat transfer by disturbing the near-wall region. The augmentation of velocity and baffle dimension leads to a notable heat transfer enhancement; however, this enhancement is less sensitive to the heating intensity augmentation.</p></div>","PeriodicalId":800,"journal":{"name":"Thermophysics and Aeromechanics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermophysics and Aeromechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0869864324020069","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical computation of aiding mixed convection and heat transfer characteristics in a channel with a baffled heated wall is carried out in this work. The equations of mass, momentum and energy, alongside the boundary conditions, are solved by the finite volume formulation using the open source OpenFOAM® code. Simulations are accomplished under different parameter combinations, including the Reynolds number, Grashof number, and baffle dimension. The results are presented in terms of streamlines, isotherm contours, Nusselt number, and friction factor. The results obtained revealed that the flow translates from steady to unsteady state at a relatively low value of Reynolds number. The unsteady flow behaviour contributes to improve heat transfer by disturbing the near-wall region. The augmentation of velocity and baffle dimension leads to a notable heat transfer enhancement; however, this enhancement is less sensitive to the heating intensity augmentation.

带加热壁挡板的通道中混合对流传热增强的稳定和非稳定数值研究
本研究对带有挡板加热壁的通道中的辅助混合对流和传热特性进行了数值计算。质量、动量和能量方程以及边界条件均通过有限体积公式使用开源 OpenFOAM® 代码求解。模拟在不同的参数组合下完成,包括雷诺数、格拉肖夫数和挡板尺寸。模拟结果以流线、等温线、努塞尔特数和摩擦因数的形式呈现。研究结果表明,在雷诺数相对较低的情况下,流动就会从稳定状态转变为不稳定状态。非稳态流动行为通过扰动近壁区域来改善传热。速度和挡板尺寸的增加显著提高了传热效果,但这种提高对加热强度的增加不太敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Thermophysics and Aeromechanics
Thermophysics and Aeromechanics THERMODYNAMICS-MECHANICS
CiteScore
0.90
自引率
40.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: The journal Thermophysics and Aeromechanics publishes original reports, reviews, and discussions on the following topics: hydrogasdynamics, heat and mass transfer, turbulence, means and methods of aero- and thermophysical experiment, physics of low-temperature plasma, and physical and technical problems of energetics. These topics are the prior fields of investigation at the Institute of Thermophysics and the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences (SB RAS), which are the founders of the journal along with SB RAS. This publication promotes an exchange of information between the researchers of Russia and the international scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信