Theoretical investigations of optoelectronic properties, photocatalytic performance as a water splitting photocatalyst and band gap engineering with transition metals (TM = Fe and Co) of K3VO4, Na3VO4 and Zn3V2O8: a first-principles study

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2024-10-17 DOI:10.1039/D4RA05492J
Muhammad Awais Ali, Maryam Noor Ul Ain, Asim Mansha, Sadia Asim and Ameer Fawad Zahoor
{"title":"Theoretical investigations of optoelectronic properties, photocatalytic performance as a water splitting photocatalyst and band gap engineering with transition metals (TM = Fe and Co) of K3VO4, Na3VO4 and Zn3V2O8: a first-principles study","authors":"Muhammad Awais Ali, Maryam Noor Ul Ain, Asim Mansha, Sadia Asim and Ameer Fawad Zahoor","doi":"10.1039/D4RA05492J","DOIUrl":null,"url":null,"abstract":"<p >First-principles density functional investigations of the structural, electronic, optical and thermodynamic properties of K<small><sub>3</sub></small>VO<small><sub>4</sub></small>, Na<small><sub>3</sub></small>VO<small><sub>4</sub></small> and Zn<small><sub>3</sub></small>V<small><sub>2</sub></small>O<small><sub>8</sub></small> were performed using generalized gradient approximation (GGA) <em>via</em> ultrasoft pseudopotential and density functional theory (DFT). Their electronic structure was analyzed with a focus on the nature of electronic states near band edges. The electronic band structure revealed that between 6% Fe and 6% Co, 6% Co significantly tuned the band gap with the emergence of new states at the gamma point. Notable variations were highlighted in the electronic properties of Na<small><sub>3</sub></small>V<small><sub>(1−<em>x</em>)</sub></small>Fe<small><sub><em>x</em></sub></small>O<small><sub>4</sub></small>, Na<small><sub>3</sub></small>V<small><sub>(1−<em>x</em>)</sub></small>Co<small><sub><em>x</em></sub></small>O<small><sub>4</sub></small>, K<small><sub>3</sub></small>V<small><sub>(1−<em>x</em>)</sub></small>Fe<small><sub><em>x</em></sub></small>O<small><sub>4</sub></small>, K<small><sub>3</sub></small>V<small><sub>(1−<em>x</em>)</sub></small>Co<small><sub><em>x</em></sub></small>O<small><sub>4</sub></small>, Zn<small><sub>3(1−<em>x</em>)</sub></small>V<small><sub>2(1−<em>x</em>)</sub></small>Co<small><sub><em>x</em></sub></small>O<small><sub>8</sub></small> and Zn<small><sub>3(1−<em>x</em>)</sub></small>V<small><sub>2(1−<em>x</em>)</sub></small>Fe<small><sub><em>x</em></sub></small>O<small><sub>8</sub></small> (where <em>x</em> = 0.06) due to the different natures of the unoccupied 3d states of Fe and Co. Density of states analysis as well as α (spin up) and β (spin down) magnetic moments showed that cobalt can reduce the band gap by positioning the valence band higher than O 2p orbitals and the conduction band lower than V 3d orbitals. Mulliken charge distribution revealed the presence of the 6s<small><sup>2</sup></small> lone pair on Zn, greater population and short bond length in V–O bonds. Hence, the hardness and covalent character develops owing to the V–O bond. Elastic properties, including bulk modulus, shear modulus, Pugh ratio and Poisson ratio, were computed and showed Zn<small><sub>3</sub></small>V<small><sub>2</sub></small>O<small><sub>8</sub></small> to be mechanically more stable than Na<small><sub>3</sub></small>VO<small><sub>4</sub></small> and K<small><sub>3</sub></small>VO<small><sub>4</sub></small>. Optimal values of optical properties, such as absorption, reflectivity, dielectric function, refractive index and loss functions, demonstrated Zn<small><sub>3</sub></small>V<small><sub>2</sub></small>O<small><sub>8</sub></small> as an efficient photocatalytic compound. The optimum trend within finite temperature ranges utilizing quasi-harmonic technique is illustrated by calculating thermodynamic parameters. Theoretical investigations presented here will open up a new line of exploration of the photocatalytic characteristics of orthovanadates.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra05492j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra05492j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

First-principles density functional investigations of the structural, electronic, optical and thermodynamic properties of K3VO4, Na3VO4 and Zn3V2O8 were performed using generalized gradient approximation (GGA) via ultrasoft pseudopotential and density functional theory (DFT). Their electronic structure was analyzed with a focus on the nature of electronic states near band edges. The electronic band structure revealed that between 6% Fe and 6% Co, 6% Co significantly tuned the band gap with the emergence of new states at the gamma point. Notable variations were highlighted in the electronic properties of Na3V(1−x)FexO4, Na3V(1−x)CoxO4, K3V(1−x)FexO4, K3V(1−x)CoxO4, Zn3(1−x)V2(1−x)CoxO8 and Zn3(1−x)V2(1−x)FexO8 (where x = 0.06) due to the different natures of the unoccupied 3d states of Fe and Co. Density of states analysis as well as α (spin up) and β (spin down) magnetic moments showed that cobalt can reduce the band gap by positioning the valence band higher than O 2p orbitals and the conduction band lower than V 3d orbitals. Mulliken charge distribution revealed the presence of the 6s2 lone pair on Zn, greater population and short bond length in V–O bonds. Hence, the hardness and covalent character develops owing to the V–O bond. Elastic properties, including bulk modulus, shear modulus, Pugh ratio and Poisson ratio, were computed and showed Zn3V2O8 to be mechanically more stable than Na3VO4 and K3VO4. Optimal values of optical properties, such as absorption, reflectivity, dielectric function, refractive index and loss functions, demonstrated Zn3V2O8 as an efficient photocatalytic compound. The optimum trend within finite temperature ranges utilizing quasi-harmonic technique is illustrated by calculating thermodynamic parameters. Theoretical investigations presented here will open up a new line of exploration of the photocatalytic characteristics of orthovanadates.

K3VO4、Na3VO4 和 Zn3V2O8 的光电特性、作为水分离光催化剂的光催化性能以及过渡金属(TM = Fe 和 Co)带隙工程的理论研究:第一性原理研究
通过超软伪势和密度泛函理论(DFT),使用广义梯度近似(GGA)对 K3VO4、Na3VO4 和 Zn3V2O8 的结构、电子、光学和热力学性质进行了第一原理密度泛函研究。分析了它们的电子结构,重点是带边附近电子状态的性质。电子能带结构显示,在 6% Fe 和 6% Co 之间,6% Co 显著调整了能带间隙,在伽马点出现了新的状态。由于铁和钴的未占 3d 态性质不同,Na3V(1-x)FexO4、Na3V(1-x)CoxO4、K3V(1-x)FexO4、K3V(1-x)CoxO4、Zn3(1-x)V2(1-x)CoxO8 和 Zn3(1-x)V2(1-x)FexO8(其中 x = 0.06)的电子特性也发生了显著变化。状态密度分析以及 α(自旋上升)和 β(自旋下降)磁矩表明,钴可以通过将价带置于高于 O 2p 轨道和导带置于低于 V 3d 轨道的位置来减小带隙。Mulliken 电荷分布显示,Zn 上存在 6s2 孤对,V-O 键中存在较大的种群和较短的键长。因此,由于 V-O 键的存在,形成了硬度和共价特性。对包括体积模量、剪切模量、普氏比和泊松比在内的弹性特性进行了计算,结果表明 Zn3V2O8 的机械稳定性高于 Na3VO4 和 K3VO4。吸收率、反射率、介电常数、折射率和损耗函数等光学特性的最佳值表明 Zn3V2O8 是一种高效的光催化化合物。通过计算热力学参数,利用准谐波技术说明了在有限温度范围内的最佳趋势。本文介绍的理论研究将为探索正钒酸盐的光催化特性开辟一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信