Historical knowledge transfer driven self-adaptive evolutionary multitasking algorithm with hybrid resource release for solving nonlinear equation systems
IF 8.2 1区 计算机科学Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yujun Zhang , Yufei Wang , Yuxin Yan , Juan Zhao , Zhengming Gao
{"title":"Historical knowledge transfer driven self-adaptive evolutionary multitasking algorithm with hybrid resource release for solving nonlinear equation systems","authors":"Yujun Zhang , Yufei Wang , Yuxin Yan , Juan Zhao , Zhengming Gao","doi":"10.1016/j.swevo.2024.101754","DOIUrl":null,"url":null,"abstract":"<div><div>In reality, there are many extremely complex nonlinear optimization problems. How to locate the roots of nonlinear equation systems (NESs) more accurately and efficiently has always been a major numerical challenge. Although there are many excellent algorithms to solve NESs, which are all limited by the fact that the algorithm can solve at most one NES in a single run. Therefore, this paper proposes a historical knowledge transfer driven self-adaptive evolutionary multitasking algorithm framework (EMSaRNES) with hybrid resource release to solve NESs. Its core is that in one run, EMSaRNES can efficiently and accurately locate the roots of multiple NESs. In EMSaRNES, self-adaptive parameter method is proposed to dynamically adjust parameters of the algorithm. Secondly, adaptive selection mutation mechanism with historical knowledge transfer is designed, which dynamically adjusts the evolution of populations with or without knowledge sharing according to changes in the current population diversity, thereby balancing population diversity and convergence. Finally, hybrid resource release strategy is developed, which archives the roots that meet the accuracy requirements, and then three distributions are selected to generate new populations, thus ensuring that the population diversity is maintained at high level. After a variety of experiments, it has been proven that compared to comparative algorithms EMSaRNES has superior performance on 30 general NESs test sets. In addition, the results on 18 extremely complex NESs test sets and two real-life application problems further prove that EMSaRNES finds more roots in the face of complex problems and real-life problems.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101754"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221065022400292X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In reality, there are many extremely complex nonlinear optimization problems. How to locate the roots of nonlinear equation systems (NESs) more accurately and efficiently has always been a major numerical challenge. Although there are many excellent algorithms to solve NESs, which are all limited by the fact that the algorithm can solve at most one NES in a single run. Therefore, this paper proposes a historical knowledge transfer driven self-adaptive evolutionary multitasking algorithm framework (EMSaRNES) with hybrid resource release to solve NESs. Its core is that in one run, EMSaRNES can efficiently and accurately locate the roots of multiple NESs. In EMSaRNES, self-adaptive parameter method is proposed to dynamically adjust parameters of the algorithm. Secondly, adaptive selection mutation mechanism with historical knowledge transfer is designed, which dynamically adjusts the evolution of populations with or without knowledge sharing according to changes in the current population diversity, thereby balancing population diversity and convergence. Finally, hybrid resource release strategy is developed, which archives the roots that meet the accuracy requirements, and then three distributions are selected to generate new populations, thus ensuring that the population diversity is maintained at high level. After a variety of experiments, it has been proven that compared to comparative algorithms EMSaRNES has superior performance on 30 general NESs test sets. In addition, the results on 18 extremely complex NESs test sets and two real-life application problems further prove that EMSaRNES finds more roots in the face of complex problems and real-life problems.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.