Extraction of bioactive components from date palm waste, various extraction processes and their applications: A review

IF 5.8 2区 生物学 Q1 AGRICULTURAL ENGINEERING
Imtisal Zahid , Muhammad Hamza Nazir , Muhammad Asad Javed
{"title":"Extraction of bioactive components from date palm waste, various extraction processes and their applications: A review","authors":"Imtisal Zahid ,&nbsp;Muhammad Hamza Nazir ,&nbsp;Muhammad Asad Javed","doi":"10.1016/j.biombioe.2024.107433","DOIUrl":null,"url":null,"abstract":"<div><div>Dates are vital sources of nutrients and bioactive components which are widely consumed throughout the world. Agro-industrial waste, such as date palm waste, has been recognized as a potential candidate of bioactive chemicals and essential oils for utilization in food, medicine, and cosmetics. Date fruit and seed are well-known for their nutritional worth, which includes high sugar, vitamins, and mineral content that includes potassium and magnesium. Presence of phenolic compounds diverges the attention of researchers towards efficient extraction processes. Various traditional e.g., soxhlet, maceration, infusion, and digesting and advanced extraction techniques, i.e., pressurised fluid extraction (PFE), enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and supercritical CO<sub>2</sub> extraction (SC-CO<sub>2</sub>) have been discussed briefly to extract bioactive components for instance flavonoids, tocopherols, tannins, carotenoids, tocotrienols and hydroxybenzoic acid from date palm fruit, seed, and leaves. The findings reveal that the higher total phenolic content in a shorter time can be obtained by combining ultrasonic with PLE or SFE extraction techniques. These bioactive components can be used in the food and pharmaceutical industries for pre-treatment of certain ailments. Moreover, the natural bioactive components with potential therapeutic benefits, such as non-starch polysaccharides and selenium. The purpose of this study is to highlight the advances achieved in understanding bioactive components e.g., phenolic compounds, flavonoids, tannins hydroxycinnamic, hydroxybenzoic and bio-oil of date palm fruits, including their synthesis, probable functions, and health advantages, to find prospective uses for date-derived materials in the cosmetics, pharmaceutical and food sector.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"190 ","pages":"Article 107433"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424003866","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Dates are vital sources of nutrients and bioactive components which are widely consumed throughout the world. Agro-industrial waste, such as date palm waste, has been recognized as a potential candidate of bioactive chemicals and essential oils for utilization in food, medicine, and cosmetics. Date fruit and seed are well-known for their nutritional worth, which includes high sugar, vitamins, and mineral content that includes potassium and magnesium. Presence of phenolic compounds diverges the attention of researchers towards efficient extraction processes. Various traditional e.g., soxhlet, maceration, infusion, and digesting and advanced extraction techniques, i.e., pressurised fluid extraction (PFE), enzyme-assisted extraction (EAE), microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), and supercritical CO2 extraction (SC-CO2) have been discussed briefly to extract bioactive components for instance flavonoids, tocopherols, tannins, carotenoids, tocotrienols and hydroxybenzoic acid from date palm fruit, seed, and leaves. The findings reveal that the higher total phenolic content in a shorter time can be obtained by combining ultrasonic with PLE or SFE extraction techniques. These bioactive components can be used in the food and pharmaceutical industries for pre-treatment of certain ailments. Moreover, the natural bioactive components with potential therapeutic benefits, such as non-starch polysaccharides and selenium. The purpose of this study is to highlight the advances achieved in understanding bioactive components e.g., phenolic compounds, flavonoids, tannins hydroxycinnamic, hydroxybenzoic and bio-oil of date palm fruits, including their synthesis, probable functions, and health advantages, to find prospective uses for date-derived materials in the cosmetics, pharmaceutical and food sector.

Abstract Image

从枣椰树废料中提取生物活性成分、各种提取工艺及其应用:综述
椰枣是营养和生物活性成分的重要来源,在世界各地被广泛食用。农用工业废料,如椰枣废料,已被认为是生物活性化学品和精油的潜在候选原料,可用于食品、医药和化妆品。椰枣果实和种子的营养价值是众所周知的,其中包括高糖、高维生素以及包括钾和镁在内的矿物质含量。酚类化合物的存在引起了研究人员对高效提取工艺的关注。各种传统的萃取工艺,如索氏提取法、浸渍法、浸泡法和消化法,以及先进的萃取技术,如加压流体萃取法(PFE)、这些技术包括加压流体萃取(PFE)、酶辅助萃取(EAE)、微波辅助萃取(MAE)、超声辅助萃取(UAE)和超临界二氧化碳萃取(SC-CO2),用于从枣椰树果实、种子和叶子中提取生物活性成分,如类黄酮、生育酚、单宁、类胡萝卜素、生育三烯酚和羟基苯甲酸。研究结果表明,将超声波与 PLE 或 SFE 萃取技术相结合,可以在更短的时间内获得更高的总酚含量。这些生物活性成分可用于食品和制药行业,对某些疾病进行预处理。此外,天然生物活性成分还具有潜在的治疗功效,如非淀粉多糖和硒。本研究的目的是强调在了解生物活性成分(如枣椰果实中的酚类化合物、类黄酮、单宁羟基肉桂酸、羟基苯甲酸和生物油)方面所取得的进展,包括它们的合成、可能的功能和健康优势,从而找到枣类衍生材料在化妆品、制药和食品领域的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomass & Bioenergy
Biomass & Bioenergy 工程技术-能源与燃料
CiteScore
11.50
自引率
3.30%
发文量
258
审稿时长
60 days
期刊介绍: Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials. The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy. Key areas covered by the journal: • Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation. • Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal. • Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes • Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation • Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信