Xuan Chen , Tai-Xiang Jiang , Yexun Hu , Jinjin Yu , Michael K. Ng
{"title":"Adaptive sampling with tensor leverage scores for exact low-rank third-order tensor completion","authors":"Xuan Chen , Tai-Xiang Jiang , Yexun Hu , Jinjin Yu , Michael K. Ng","doi":"10.1016/j.apm.2024.115744","DOIUrl":null,"url":null,"abstract":"<div><div>Tensor completion aims at estimating the missing entries from the incomplete observation. Under the tensor singular value decomposition framework, the exact recovery of a low-tubal-rank third-order tensor could be achieved via convex optimization with high probability if the tensor satisfies the tensor incoherence condition. In this work, we show that, when the random selection of entries is made adaptive to a distribution which is dependent on the coherence structure of the tensor, any low-tubal-rank tensor of the size <span><math><mi>n</mi><mo>×</mo><mi>n</mi><mo>×</mo><mi>n</mi></math></span> with tubal-rank <em>r</em> can be exactly recovered with high probability from as few as <span><math><mi>O</mi><mo>(</mo><mi>r</mi><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msup><mo></mo><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span> randomly chosen entries. In practice, tensor leverage scores are not known a priori, and we design a two-phase adaptive sampling strategy to obtain the leverage scores. Numerical experiments on synthetic and real-world third-order tensor data sets are used to validate our theoretical results and illustrate that the tensor recovery performance of the proposed two-phase adaptive sampling scheme is better than that of the other state-of-the-art methods.</div></div>","PeriodicalId":50980,"journal":{"name":"Applied Mathematical Modelling","volume":"138 ","pages":"Article 115744"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Modelling","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0307904X24004979","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Tensor completion aims at estimating the missing entries from the incomplete observation. Under the tensor singular value decomposition framework, the exact recovery of a low-tubal-rank third-order tensor could be achieved via convex optimization with high probability if the tensor satisfies the tensor incoherence condition. In this work, we show that, when the random selection of entries is made adaptive to a distribution which is dependent on the coherence structure of the tensor, any low-tubal-rank tensor of the size with tubal-rank r can be exactly recovered with high probability from as few as randomly chosen entries. In practice, tensor leverage scores are not known a priori, and we design a two-phase adaptive sampling strategy to obtain the leverage scores. Numerical experiments on synthetic and real-world third-order tensor data sets are used to validate our theoretical results and illustrate that the tensor recovery performance of the proposed two-phase adaptive sampling scheme is better than that of the other state-of-the-art methods.
期刊介绍:
Applied Mathematical Modelling focuses on research related to the mathematical modelling of engineering and environmental processes, manufacturing, and industrial systems. A significant emerging area of research activity involves multiphysics processes, and contributions in this area are particularly encouraged.
This influential publication covers a wide spectrum of subjects including heat transfer, fluid mechanics, CFD, and transport phenomena; solid mechanics and mechanics of metals; electromagnets and MHD; reliability modelling and system optimization; finite volume, finite element, and boundary element procedures; modelling of inventory, industrial, manufacturing and logistics systems for viable decision making; civil engineering systems and structures; mineral and energy resources; relevant software engineering issues associated with CAD and CAE; and materials and metallurgical engineering.
Applied Mathematical Modelling is primarily interested in papers developing increased insights into real-world problems through novel mathematical modelling, novel applications or a combination of these. Papers employing existing numerical techniques must demonstrate sufficient novelty in the solution of practical problems. Papers on fuzzy logic in decision-making or purely financial mathematics are normally not considered. Research on fractional differential equations, bifurcation, and numerical methods needs to include practical examples. Population dynamics must solve realistic scenarios. Papers in the area of logistics and business modelling should demonstrate meaningful managerial insight. Submissions with no real-world application will not be considered.