Variable density and heat generation impact on chemically reactive carreau nanofluid heat-mass transfer over stretching sheet with convective heat condition

IF 6.4 2区 工程技术 Q1 THERMODYNAMICS
{"title":"Variable density and heat generation impact on chemically reactive carreau nanofluid heat-mass transfer over stretching sheet with convective heat condition","authors":"","doi":"10.1016/j.csite.2024.105260","DOIUrl":null,"url":null,"abstract":"<div><div>The present study focuses on the physical significance of heat generation and chemical reaction on Carreau nanofluid with convective heat conditions. Heat transfer is characterized using convective boundary conditions. The governing partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) by using well define stream functions and similarity transformations. Using a shooting methodology, the Keller-box method with Newton Raphson scheme is used to elaborate the numerical solutions of physical phenomena. Utilizing a similar technique to find the impact of physical parameter such as the production of heat <span><math><mrow><mi>δ</mi></mrow></math></span>, the rate of reaction <span><math><mrow><mi>Λ</mi></mrow></math></span>, Biot numbers <span><math><mrow><mi>γ</mi></mrow></math></span>, Brownian motion variable <span><math><mrow><msub><mi>N</mi><mi>b</mi></msub></mrow></math></span>, the thermophoresis parameters <span><math><mrow><msub><mi>N</mi><mi>t</mi></msub></mrow></math></span>, the Weissenberg quantity <span><math><mrow><mtext>We</mtext></mrow></math></span>, Prandtl number <span><math><mrow><mi>Pr</mi></mrow></math></span>, and Lewis number <span><math><mrow><msub><mi>L</mi><mi>e</mi></msub></mrow></math></span> on velocity profile, temperature profile and mass transmission profile are determined graphically. The skin-friction coefficient <span><math><mrow><mo>−</mo><msup><mi>f</mi><mo>″</mo></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span>, local Nusselt <span><math><mrow><mo>−</mo><msup><mi>θ</mi><mo>′</mo></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span>, and Sherwood numbers <span><math><mrow><mo>−</mo><msup><mi>ϕ</mi><mo>′</mo></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span> are analyzed numerically. Increment in fluid velocity and slip temperature are depicted with high Biot number. Maximum magnitude of fluid temperature and fluid concentration function are depicted at high value of temperature dependent density. The magnitude of heat and mass transportation enhanced with maximum choice of Brownian motion.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012917","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The present study focuses on the physical significance of heat generation and chemical reaction on Carreau nanofluid with convective heat conditions. Heat transfer is characterized using convective boundary conditions. The governing partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) by using well define stream functions and similarity transformations. Using a shooting methodology, the Keller-box method with Newton Raphson scheme is used to elaborate the numerical solutions of physical phenomena. Utilizing a similar technique to find the impact of physical parameter such as the production of heat δ, the rate of reaction Λ, Biot numbers γ, Brownian motion variable Nb, the thermophoresis parameters Nt, the Weissenberg quantity We, Prandtl number Pr, and Lewis number Le on velocity profile, temperature profile and mass transmission profile are determined graphically. The skin-friction coefficient f(0), local Nusselt θ(0), and Sherwood numbers ϕ(0) are analyzed numerically. Increment in fluid velocity and slip temperature are depicted with high Biot number. Maximum magnitude of fluid temperature and fluid concentration function are depicted at high value of temperature dependent density. The magnitude of heat and mass transportation enhanced with maximum choice of Brownian motion.

Abstract Image

不同密度和发热量对对流热条件下拉伸片上化学反应卡络纳米流体传热的影响
本研究的重点是对流热条件下 Carreau 纳米流体的发热和化学反应的物理意义。热传导采用对流边界条件。通过使用定义明确的流函数和相似变换,将支配偏微分方程(PDE)转换为常微分方程(ODE)。利用拍摄方法,采用牛顿-拉斐森方案的凯勒方框法来阐述物理现象的数值解。利用类似技术,以图形方式确定了热量产生δ、反应速率Λ、比奥特数γ、布朗运动变量 Nb、热泳参数 Nt、魏森伯格量 We、普朗特数 Pr 和路易斯数 Le 等物理参数对速度曲线、温度曲线和质量传输曲线的影响。对摩擦系数 -f″(0)、局部努塞尔特数 -θ′(0)和舍伍德数 -j′(0)进行了数值分析。流体速度和滑移温度随 Biot 数的增大而增加。流体温度和流体浓度函数的最大值取决于高温度密度值。在选择最大布朗运动时,热量和质量的传输量会增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Case Studies in Thermal Engineering
Case Studies in Thermal Engineering Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
8.60
自引率
11.80%
发文量
812
审稿时长
76 days
期刊介绍: Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信