{"title":"Design and optimization of reaction-separation-recycle systems using a pseudo-transient continuation model","authors":"Mohamad Roostaei, Reza Eslamloueyan","doi":"10.1016/j.cherd.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>The reaction-separation-recycle (RSR) systems are an important part of chemical processes. Due to the interaction between reaction and separation sections, the behavior of RSR processes becomes highly complex and non-linear, posing different challenges for their design and optimization. The purpose of this study is to design and optimize RSR processes for irreversible liquid phase reaction systems using the pseudo-transient continuation (PTC) approach within an equation-oriented programing environment. This approach was applied to investigate one binary system and four ternary systems. The differential-algebraic models of the proposed process flowsheets were solved until the steady-state conditions were reached. The tray bypass efficiency method was incorporated into the PTC to circumvent the need for discrete optimization. The results demonstrated that in those cases where the product was heavier than the reactants, employing a stripping column was more economical than using a conventional distillation column for both the binary and ternary systems. In the ternary systems with two recycle streams, when the product was the intermediate component in terms of boiling point, the utilization of a divided-wall distillation column (DWC) resulted in a total annual cost saving of 35 % and 41 % compared to direct and indirect separation methods, respectively.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 235-252"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005987","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The reaction-separation-recycle (RSR) systems are an important part of chemical processes. Due to the interaction between reaction and separation sections, the behavior of RSR processes becomes highly complex and non-linear, posing different challenges for their design and optimization. The purpose of this study is to design and optimize RSR processes for irreversible liquid phase reaction systems using the pseudo-transient continuation (PTC) approach within an equation-oriented programing environment. This approach was applied to investigate one binary system and four ternary systems. The differential-algebraic models of the proposed process flowsheets were solved until the steady-state conditions were reached. The tray bypass efficiency method was incorporated into the PTC to circumvent the need for discrete optimization. The results demonstrated that in those cases where the product was heavier than the reactants, employing a stripping column was more economical than using a conventional distillation column for both the binary and ternary systems. In the ternary systems with two recycle streams, when the product was the intermediate component in terms of boiling point, the utilization of a divided-wall distillation column (DWC) resulted in a total annual cost saving of 35 % and 41 % compared to direct and indirect separation methods, respectively.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.