{"title":"An experimental and ANN analysis of ammonia energy integration in biofuel powered low-temperature combustion engine to enhance cleaner combustion","authors":"","doi":"10.1016/j.csite.2024.105284","DOIUrl":null,"url":null,"abstract":"<div><div>In the pursuit of global net-zero emissions targets and cleaner combustion technologies, researchers are increasingly turning to innovative solutions. Ammonia, as a carbon-free fuel, holds promise for achieving low emissions and efficient combustion. This study explores the potential synergies of various ammonia shares (20 %, 40 %, and 60 %) combined with <em>Citronella</em> biofuel in a Low-Temperature Combustion (LTC) Reactivity Controlled Compression Ignition (RCCI) engine. Comparative analysis between a 40 % ammonia blend <em>Citronella</em> biofuel (A40) and a Standard Diesel (SDL) in an RCCI engine demonstrates significant reductions in oxides of nitrogen (by 17 %), carbon dioxide (by 6.6 %), and smoke (by 9.8 %), along with a notable enhancement in Brake Thermal Efficiency (BTE) by 5.4 % for A40. The validation of results using an Artificial Neural Network (ANN) model shows robust coefficients of determination (97 %), high R values (0.9945–0.9995), and low Root Mean Square Error values (ranging from 0.0219 to 0.0483). These findings strongly support the efficacy of the A40 blend, positioning it as a promising and viable alternative fuel for achieving cleaner combustion in LTC-RCCI engines.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24013157","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
In the pursuit of global net-zero emissions targets and cleaner combustion technologies, researchers are increasingly turning to innovative solutions. Ammonia, as a carbon-free fuel, holds promise for achieving low emissions and efficient combustion. This study explores the potential synergies of various ammonia shares (20 %, 40 %, and 60 %) combined with Citronella biofuel in a Low-Temperature Combustion (LTC) Reactivity Controlled Compression Ignition (RCCI) engine. Comparative analysis between a 40 % ammonia blend Citronella biofuel (A40) and a Standard Diesel (SDL) in an RCCI engine demonstrates significant reductions in oxides of nitrogen (by 17 %), carbon dioxide (by 6.6 %), and smoke (by 9.8 %), along with a notable enhancement in Brake Thermal Efficiency (BTE) by 5.4 % for A40. The validation of results using an Artificial Neural Network (ANN) model shows robust coefficients of determination (97 %), high R values (0.9945–0.9995), and low Root Mean Square Error values (ranging from 0.0219 to 0.0483). These findings strongly support the efficacy of the A40 blend, positioning it as a promising and viable alternative fuel for achieving cleaner combustion in LTC-RCCI engines.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.