Global well-posedness of weak solutions to the incompressible Euler equations with helical symmetry in R3

IF 2.4 2区 数学 Q1 MATHEMATICS
Dengjun Guo, Lifeng Zhao
{"title":"Global well-posedness of weak solutions to the incompressible Euler equations with helical symmetry in R3","authors":"Dengjun Guo,&nbsp;Lifeng Zhao","doi":"10.1016/j.jde.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the three-dimensional incompressible Euler equation<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd></mtd><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>Ω</mi><mo>+</mo><mi>U</mi><mo>⋅</mo><mi>∇</mi><mi>Ω</mi><mo>−</mo><mi>Ω</mi><mo>⋅</mo><mi>∇</mi><mi>U</mi><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd></mtd><mtd><mi>Ω</mi><mo>(</mo><mi>x</mi><mo>,</mo><mn>0</mn><mo>)</mo><mo>=</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></mtd></mtr></mtable></mrow></math></span></span></span> in the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Under the assumption that <span><math><msup><mrow><mi>Ω</mi></mrow><mrow><mi>z</mi></mrow></msup></math></span> is helical and in the absence of vorticity stretching, we prove the global well-posedness of weak solutions in <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>⋂</mo><msubsup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></math></span>. Moreover, the vortex transport formula and the conservation of the energy and the second momentum are also obtained in our article, which will serve as valuable tools in our subsequent exploration of the dynamics of helical vortex filaments.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006582","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the three-dimensional incompressible Euler equation{tΩ+UΩΩU=0Ω(x,0)=Ω0(x) in the whole space R3. Under the assumption that Ωz is helical and in the absence of vorticity stretching, we prove the global well-posedness of weak solutions in L11L1(R3). Moreover, the vortex transport formula and the conservation of the energy and the second momentum are also obtained in our article, which will serve as valuable tools in our subsequent exploration of the dynamics of helical vortex filaments.
R3 中具有螺旋对称性的不可压缩欧拉方程弱解的全局好求解性
我们考虑了整个空间 R3 中的三维不可压缩欧拉方程{∂tΩ+U⋅∇Ω-Ω⋅∇U=0Ω(x,0)=Ω0(x)。在假设Ωz 是螺旋形且没有涡度伸展的情况下,我们证明了弱解在 L11⋂L1∞(R3)中的全局好求解性。此外,我们的文章还得到了涡旋输运公式以及能量和第二动量守恒,这将成为我们后续探索螺旋涡丝动力学的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信