Guanqun Tang , Huiyin Mo , Le Gao , Yidi Chen , Xu Zhou
{"title":"Adsorption of crystal violet from wastewater using alkaline-modified pomelo peel-derived biochar","authors":"Guanqun Tang , Huiyin Mo , Le Gao , Yidi Chen , Xu Zhou","doi":"10.1016/j.jwpe.2024.106334","DOIUrl":null,"url":null,"abstract":"<div><div>The purpose of this study is to investigate the optimal preparation conditions for alkali-modified pomelo peel biochar and to clarify its adsorption process towards crystal violet (CV). The pyrolysis temperature and the alkali-to-carbon ratio of pomelo peel raw materials with varying epidermal layers were evaluated and optimized. Several characterization techniques demonstrated that alkaline modification enhances the adsorption performance of biochar by modifying its pore structure and functional group composition. Notably, the biochar, derived from the outer epidermis of pomelo, modified with an alkali-to-carbon ratio of 2:1 at 900 °C (KC2), exhibited significant adsorption capacity through mechanisms such as pore filling, hydrogen bonding, π-π interactions, electrostatic interactions, and functional groups including C<img>C and C<img>O<img>C. The Freundlich isotherm and the pseudo-second-order kinetic model were determined to be the most appropriate for describing the equilibrium data. Accordingly, KC2 exhibited a maximum adsorption capacity of 805.69 mg/g, which significantly exceeded that of biochar derived from pomelo peel with a basic outer epidermis pyrolyzed at 900 °C (BC-GOP900, 586.7 mg/g). This study ultimately concluded that utilizing pomelo peel biochar, particularly KC2, represents an innovative strategy to address pollution caused by CV while effectively repurposing agricultural waste.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"68 ","pages":"Article 106334"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424015666","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this study is to investigate the optimal preparation conditions for alkali-modified pomelo peel biochar and to clarify its adsorption process towards crystal violet (CV). The pyrolysis temperature and the alkali-to-carbon ratio of pomelo peel raw materials with varying epidermal layers were evaluated and optimized. Several characterization techniques demonstrated that alkaline modification enhances the adsorption performance of biochar by modifying its pore structure and functional group composition. Notably, the biochar, derived from the outer epidermis of pomelo, modified with an alkali-to-carbon ratio of 2:1 at 900 °C (KC2), exhibited significant adsorption capacity through mechanisms such as pore filling, hydrogen bonding, π-π interactions, electrostatic interactions, and functional groups including CC and COC. The Freundlich isotherm and the pseudo-second-order kinetic model were determined to be the most appropriate for describing the equilibrium data. Accordingly, KC2 exhibited a maximum adsorption capacity of 805.69 mg/g, which significantly exceeded that of biochar derived from pomelo peel with a basic outer epidermis pyrolyzed at 900 °C (BC-GOP900, 586.7 mg/g). This study ultimately concluded that utilizing pomelo peel biochar, particularly KC2, represents an innovative strategy to address pollution caused by CV while effectively repurposing agricultural waste.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies