Jacobi spectral collocation method of space-fractional Navier-Stokes equations

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yujian Jiao , Tingting Li , Zhongqiang Zhang
{"title":"Jacobi spectral collocation method of space-fractional Navier-Stokes equations","authors":"Yujian Jiao ,&nbsp;Tingting Li ,&nbsp;Zhongqiang Zhang","doi":"10.1016/j.amc.2024.129111","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the Jacobi spectral collocation method for two-dimensional space-fractional Navier-Stokes equations with Laplacian and fractional Laplacian. We first derive modified fractional differentiation matrices to accommodate the singularity in two dimensions and verify the boundedness of its spectral radius. Next, we construct a fully discrete scheme for the space-fractional Navier-Stokes equations, combined with the first-order implicit-explicit Euler time-stepping scheme at the Jacobi-Gauss-Lobatto collocation points. Through some two-dimensional numerical examples, we present the influence of different parameters in the equations on numerical errors. Various numerical examples verify the effectiveness of our method and suggest the smoothness of the solution for further regularity analysis.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005721","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Jacobi spectral collocation method for two-dimensional space-fractional Navier-Stokes equations with Laplacian and fractional Laplacian. We first derive modified fractional differentiation matrices to accommodate the singularity in two dimensions and verify the boundedness of its spectral radius. Next, we construct a fully discrete scheme for the space-fractional Navier-Stokes equations, combined with the first-order implicit-explicit Euler time-stepping scheme at the Jacobi-Gauss-Lobatto collocation points. Through some two-dimensional numerical examples, we present the influence of different parameters in the equations on numerical errors. Various numerical examples verify the effectiveness of our method and suggest the smoothness of the solution for further regularity analysis.
空间分数纳维-斯托克斯方程的雅可比谱配位法
本文研究了带有拉普拉奇和分数拉普拉奇的二维空间分数 Navier-Stokes 方程的雅可比谱配位法。我们首先推导出修正的分数微分矩阵,以适应二维的奇异性,并验证了其谱半径的有界性。接下来,我们为空间分数 Navier-Stokes 方程构建了一个完全离散的方案,并在 Jacobi-Gauss-Lobatto 配点上结合了一阶隐式-显式欧拉时间步进方案。通过一些二维数值示例,我们介绍了方程中不同参数对数值误差的影响。各种数值示例验证了我们方法的有效性,并为进一步的正则性分析提出了解的平滑性建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信