A Lagrange barrier approach for the minimum concave cost supply problem via a logarithmic descent direction algorithm

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Yaolong Yu , Zhengtian Wu , Baoping Jiang , Huaicheng Yan , Yichen Lu
{"title":"A Lagrange barrier approach for the minimum concave cost supply problem via a logarithmic descent direction algorithm","authors":"Yaolong Yu ,&nbsp;Zhengtian Wu ,&nbsp;Baoping Jiang ,&nbsp;Huaicheng Yan ,&nbsp;Yichen Lu","doi":"10.1016/j.amc.2024.129114","DOIUrl":null,"url":null,"abstract":"<div><div>The minimisation of concave costs in the supply chain presents a challenging non-deterministic polynomial (NP) optimisation problem, widely applicable in industrial and management engineering. To approximate solutions to this problem, we propose a logarithmic descent direction algorithm (LDDA) that utilises the Lagrange logarithmic barrier function. As the barrier variable decreases from a high positive value to zero, the algorithm is capable of tracking the minimal track of the logarithmic barrier function, thereby obtaining top-quality solutions. The Lagrange function is utilised to handle linear equality constraints, whilst the logarithmic barrier function compels the solution towards the global or near-global optimum. Within this concave cost supply model, a logarithmic descent direction is constructed, and an iterative optimisation process for the algorithm is proposed. A corresponding Lyapunov function naturally emerges from this descent direction, thus ensuring convergence of the proposed algorithm. Numerical results demonstrate the effectiveness of the algorithm.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"488 ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005757","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The minimisation of concave costs in the supply chain presents a challenging non-deterministic polynomial (NP) optimisation problem, widely applicable in industrial and management engineering. To approximate solutions to this problem, we propose a logarithmic descent direction algorithm (LDDA) that utilises the Lagrange logarithmic barrier function. As the barrier variable decreases from a high positive value to zero, the algorithm is capable of tracking the minimal track of the logarithmic barrier function, thereby obtaining top-quality solutions. The Lagrange function is utilised to handle linear equality constraints, whilst the logarithmic barrier function compels the solution towards the global or near-global optimum. Within this concave cost supply model, a logarithmic descent direction is constructed, and an iterative optimisation process for the algorithm is proposed. A corresponding Lyapunov function naturally emerges from this descent direction, thus ensuring convergence of the proposed algorithm. Numerical results demonstrate the effectiveness of the algorithm.
通过对数下降方向算法解决最小凹成本供应问题的拉格朗日障碍法
供应链中凹成本的最小化是一个具有挑战性的非确定多项式(NP)优化问题,广泛应用于工业和管理工程领域。为了近似解决这一问题,我们提出了一种利用拉格朗日对数障碍函数的对数下降方向算法(LDDA)。当障碍变量从高正值下降到零时,该算法能够跟踪对数障碍函数的最小轨迹,从而获得高质量的解决方案。拉格朗日函数用于处理线性相等约束条件,而对数障碍函数则迫使求解走向全局或接近全局最优。在这个凹成本供应模型中,构建了一个对数下降方向,并提出了算法的迭代优化过程。相应的 Lyapunov 函数会从这个下降方向自然产生,从而确保所提算法的收敛性。数值结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信