{"title":"Improving approximation accuracy in Godunov-type smoothed particle hydrodynamics methods","authors":"G.D. Rublev , A.N. Parshikov , S.A. Dyachkov","doi":"10.1016/j.amc.2024.129128","DOIUrl":null,"url":null,"abstract":"<div><div>The study examines the origin of errors resulting from the approximation of the right hand sides of the Euler equations using the Godunov type contact method of smoothed particle hydrodynamics (CSPH). The analytical expression for the numerical shear viscosity in CSPH method is obtained. In our recent study the numerical viscosity was determined by comparing the numerical solution of momentum diffusion in the shear flow with theoretical one. In this study we deduce the analytical expression for the numerical viscosity which is found to be similar to numerical one, confirming the obtained results. To reduce numerical diffusion, diffusion limiters are typically applied to expressions for contact values of velocity and pressure, as well as higher-order reconstruction schemes. Based on the performed theoretical analysis, we propose a new method for correcting quantities at interparticle contacts in CSPH method, which can be easily extended to the MUSCL-type (Monotonic Upstream-centered Scheme for Conservation Laws) method. Original CSPH and MUSCL-SPH approaches and ones with aforementioned correction are compared.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"488 ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005897","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The study examines the origin of errors resulting from the approximation of the right hand sides of the Euler equations using the Godunov type contact method of smoothed particle hydrodynamics (CSPH). The analytical expression for the numerical shear viscosity in CSPH method is obtained. In our recent study the numerical viscosity was determined by comparing the numerical solution of momentum diffusion in the shear flow with theoretical one. In this study we deduce the analytical expression for the numerical viscosity which is found to be similar to numerical one, confirming the obtained results. To reduce numerical diffusion, diffusion limiters are typically applied to expressions for contact values of velocity and pressure, as well as higher-order reconstruction schemes. Based on the performed theoretical analysis, we propose a new method for correcting quantities at interparticle contacts in CSPH method, which can be easily extended to the MUSCL-type (Monotonic Upstream-centered Scheme for Conservation Laws) method. Original CSPH and MUSCL-SPH approaches and ones with aforementioned correction are compared.
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.