Large time behavior of the full compressible Navier-Stokes-Maxwell system with a nonconstant background density

IF 2.4 2区 数学 Q1 MATHEMATICS
Xin Li
{"title":"Large time behavior of the full compressible Navier-Stokes-Maxwell system with a nonconstant background density","authors":"Xin Li","doi":"10.1016/j.jde.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>We study the Cauchy problem for the full compressible Navier-Stokes-Maxwell system with a nonconstant background density in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. By means of suitable choosing of symmetrizers and weighted energy estimates with some new developments, we establish the global existence and uniqueness of the classical solution provided that the initial data are near this equilibrium. Furthermore, by using the spectrum analysis on the linearized homogeneous system of the full compressible Navier-Stokes-Maxwell equations and refining the convergence property, we obtain the time-algebraic convergence rates of the perturbed solutions.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 869-896"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Cauchy problem for the full compressible Navier-Stokes-Maxwell system with a nonconstant background density in R3. By means of suitable choosing of symmetrizers and weighted energy estimates with some new developments, we establish the global existence and uniqueness of the classical solution provided that the initial data are near this equilibrium. Furthermore, by using the spectrum analysis on the linearized homogeneous system of the full compressible Navier-Stokes-Maxwell equations and refining the convergence property, we obtain the time-algebraic convergence rates of the perturbed solutions.
具有非恒定背景密度的全可压缩 Navier-Stokes-Maxwell 系统的大时间行为
我们研究了 R3 中具有非恒定背景密度的全可压缩纳维-斯托克斯-麦克斯韦系统的考奇问题。通过选择合适的对称器和加权能量估计以及一些新的发展,我们建立了经典解的全局存在性和唯一性,前提是初始数据接近该平衡。此外,通过对全可压缩 Navier-Stokes-Maxwell 方程的线性化均质系统进行频谱分析并完善收敛特性,我们得到了扰动解的时间代数收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信